Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
from dataclasses import dataclass | |
from typing import Any, Literal, Optional | |
import fire | |
import torch | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from transformers import DataCollatorForLanguageModeling | |
from llamafactory.data import MultiModalDataCollatorForSeq2Seq, get_dataset, get_template_and_fix_tokenizer | |
from llamafactory.extras.constants import IGNORE_INDEX | |
from llamafactory.hparams import get_train_args | |
from llamafactory.model import load_model, load_tokenizer | |
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq): | |
r"""Data collator for pairwise data.""" | |
train_on_prompt: bool = False | |
def __call__(self, features: list[dict[str, Any]]) -> dict[str, torch.Tensor]: | |
r"""Pad batched data to the longest sequence in the batch.""" | |
chosen_features = [] | |
for feature in features: | |
chosen_features.append( | |
{ | |
"input_ids": feature["chosen_input_ids"], | |
"attention_mask": feature["chosen_attention_mask"], | |
"labels": feature["chosen_input_ids"] if self.train_on_prompt else feature["chosen_labels"], | |
"images": feature["images"], | |
"videos": feature["videos"], | |
"audios": feature["audios"], | |
} | |
) | |
return super().__call__(chosen_features) | |
def calculate_ppl( | |
model_name_or_path: str, | |
save_name: str = "ppl.json", | |
batch_size: int = 4, | |
stage: Literal["pt", "sft", "rm"] = "sft", | |
dataset: str = "alpaca_en_demo", | |
dataset_dir: str = "data", | |
template: str = "default", | |
cutoff_len: int = 2048, | |
max_samples: Optional[int] = None, | |
train_on_prompt: bool = False, | |
): | |
r"""Calculate the ppl on the dataset of the pre-trained models. | |
Usage: export CUDA_VISIBLE_DEVICES=0 | |
python cal_ppl.py --model_name_or_path path_to_model --dataset alpaca_en_demo --save_name ppl.json | |
""" | |
model_args, data_args, training_args, finetuning_args, _ = get_train_args( | |
dict( | |
stage=stage, | |
model_name_or_path=model_name_or_path, | |
dataset=dataset, | |
dataset_dir=dataset_dir, | |
template=template, | |
cutoff_len=cutoff_len, | |
max_samples=max_samples, | |
train_on_prompt=train_on_prompt, | |
preprocessing_num_workers=16, | |
output_dir="dummy_dir", | |
overwrite_cache=True, | |
do_train=True, | |
) | |
) | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
template = get_template_and_fix_tokenizer(tokenizer, data_args) | |
trainset = get_dataset(template, model_args, data_args, training_args, stage, **tokenizer_module)["train_dataset"] | |
model = load_model(tokenizer, model_args, finetuning_args, is_trainable=False) | |
if stage == "pt": | |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) | |
elif stage == "sft": | |
data_collator = MultiModalDataCollatorForSeq2Seq( | |
template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX | |
) | |
elif stage == "rm": | |
data_collator = PairwiseDataCollatorWithPadding( | |
template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt | |
) | |
else: | |
raise NotImplementedError(f"Stage does not supported: {stage}.") | |
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True) | |
criterion = torch.nn.CrossEntropyLoss(reduction="none") | |
total_ppl = 0 | |
perplexities = [] | |
batch: dict[str, torch.Tensor] | |
with torch.no_grad(): | |
for batch in tqdm(dataloader, desc="Computing perplexities"): | |
batch = batch.to(model.device) | |
outputs = model(**batch) | |
shift_logits: torch.Tensor = outputs["logits"][..., :-1, :] | |
shift_labels: torch.Tensor = batch["labels"][..., 1:] | |
loss_mask = shift_labels != IGNORE_INDEX | |
flatten_logits = shift_logits.contiguous().view(shift_labels.size(0) * shift_labels.size(1), -1) | |
flatten_labels = shift_labels.contiguous().view(-1) | |
token_logps: torch.Tensor = criterion(flatten_logits, flatten_labels) | |
token_logps = token_logps.contiguous().view(shift_logits.size(0), -1) | |
sentence_logps = (token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) | |
total_ppl += sentence_logps.exp().sum().item() | |
perplexities.extend(sentence_logps.exp().tolist()) | |
with open(save_name, "w", encoding="utf-8") as f: | |
json.dump(perplexities, f, indent=2) | |
print(f"Average perplexity is {total_ppl / len(perplexities):.2f}") | |
print(f"Perplexities have been saved at {save_name}.") | |
if __name__ == "__main__": | |
fire.Fire(calculate_ppl) | |