File size: 15,568 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import TYPE_CHECKING, Any

import numpy as np
import pytest
import torch
from PIL import Image

from llamafactory.data.mm_plugin import get_mm_plugin
from llamafactory.extras.packages import is_transformers_version_greater_than
from llamafactory.hparams import get_infer_args
from llamafactory.model import load_tokenizer


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, ProcessorMixin
    from transformers.image_processing_utils import BaseImageProcessor

    from llamafactory.data.mm_plugin import BasePlugin
    from llamafactory.model.loader import TokenizerModule


HF_TOKEN = os.getenv("HF_TOKEN")

TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
TINY_LLAMA4 = os.getenv("TINY_LLAMA4", "llamafactory/tiny-random-Llama-4")

MM_MESSAGES = [
    {"role": "user", "content": "<image>What is in this image?"},
    {"role": "assistant", "content": "A cat."},
]

OMNI_MESSAGES = [
    {"role": "user", "content": "<image>What is in this image?"},
    {"role": "assistant", "content": "A cat."},
    {"role": "user", "content": "<audio>What is in this audio?"},
    {"role": "assistant", "content": "Nothing."},
]

TEXT_MESSAGES = [
    {"role": "user", "content": "How are you"},
    {"role": "assistant", "content": "I am fine!"},
]

AUDIOS = [np.zeros(1600)]

IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]

NO_IMAGES = []

NO_VIDEOS = []

NO_AUDIOS = []

IMGLENS = [1]

AUDLENS = [1]

NO_IMGLENS = [0]

NO_VIDLENS = [0]

NO_AUDLENS = [0]

INPUT_IDS = [0, 1, 2, 3, 4]

LABELS = [0, 1, 2, 3, 4]

BATCH_IDS = [[1] * 1024]


def _get_mm_inputs(processor: "ProcessorMixin") -> dict[str, "torch.Tensor"]:
    image_processor: BaseImageProcessor = getattr(processor, "image_processor")
    return image_processor(images=IMAGES, return_tensors="pt")


def _get_omni_inputs(processor: "ProcessorMixin") -> dict[str, "torch.Tensor"]:
    mm_inputs = {}
    image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
    feature_extractor = getattr(processor, "feature_extractor", None)

    mm_inputs.update(image_processor(IMAGES, return_tensors="pt"))
    mm_inputs.update(
        feature_extractor(
            AUDIOS,
            sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            return_attention_mask=True,
            padding="max_length",
            return_tensors="pt",
        )
    )
    mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask")
    return mm_inputs


def _is_close(batch_a: dict[str, Any], batch_b: dict[str, Any]) -> None:
    assert batch_a.keys() == batch_b.keys()
    for key in batch_a.keys():
        if isinstance(batch_a[key], torch.Tensor):
            assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5)
        elif isinstance(batch_a[key], list) and all(isinstance(item, torch.Tensor) for item in batch_a[key]):
            assert len(batch_a[key]) == len(batch_b[key])
            for tensor_a, tensor_b in zip(batch_a[key], batch_b[key]):
                assert torch.allclose(tensor_a, tensor_b, rtol=1e-4, atol=1e-5)
        else:
            assert batch_a[key] == batch_b[key]


def _load_tokenizer_module(model_name_or_path: str) -> "TokenizerModule":
    model_args, *_ = get_infer_args({"model_name_or_path": model_name_or_path, "template": "default"})
    return load_tokenizer(model_args)


def _check_plugin(
    plugin: "BasePlugin",
    tokenizer: "PreTrainedTokenizer",
    processor: "ProcessorMixin",
    expected_mm_messages: list[dict[str, str]] = MM_MESSAGES,
    expected_input_ids: list[int] = INPUT_IDS,
    expected_labels: list[int] = LABELS,
    expected_mm_inputs: dict[str, Any] = {},
    expected_no_mm_inputs: dict[str, Any] = {},
) -> None:
    # test omni_messages
    if plugin.__class__.__name__ == "Qwen2OmniPlugin":
        assert plugin.process_messages(OMNI_MESSAGES, IMAGES, NO_VIDEOS, AUDIOS, processor) == expected_mm_messages
        assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, AUDIOS, tokenizer, processor) == (
            expected_input_ids,
            expected_labels,
        )
        _is_close(
            plugin.get_mm_inputs(IMAGES, NO_VIDEOS, AUDIOS, IMGLENS, NO_VIDLENS, AUDLENS, BATCH_IDS, processor),
            expected_mm_inputs,
        )
    # test mm_messages
    if plugin.__class__.__name__ != "BasePlugin":
        assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, NO_AUDIOS, processor) == expected_mm_messages
        assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, NO_AUDIOS, tokenizer, processor) == (
            expected_input_ids,
            expected_labels,
        )
        _is_close(
            plugin.get_mm_inputs(IMAGES, NO_VIDEOS, NO_AUDIOS, IMGLENS, NO_VIDLENS, NO_AUDLENS, BATCH_IDS, processor),
            expected_mm_inputs,
        )

    # test text_messages
    assert plugin.process_messages(TEXT_MESSAGES, NO_IMAGES, NO_VIDEOS, NO_AUDIOS, processor) == TEXT_MESSAGES
    assert plugin.process_token_ids(INPUT_IDS, LABELS, NO_IMAGES, NO_VIDEOS, NO_AUDIOS, tokenizer, processor) == (
        INPUT_IDS,
        LABELS,
    )
    _is_close(
        plugin.get_mm_inputs(
            NO_IMAGES, NO_VIDEOS, NO_AUDIOS, NO_IMGLENS, NO_VIDLENS, NO_AUDLENS, BATCH_IDS, processor
        ),
        expected_no_mm_inputs,
    )


def test_base_plugin():
    tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA3)
    base_plugin = get_mm_plugin(name="base")
    check_inputs = {"plugin": base_plugin, **tokenizer_module}
    _check_plugin(**check_inputs)


@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
@pytest.mark.skipif(not is_transformers_version_greater_than("4.50.0"), reason="Requires transformers>=4.50.0")
def test_gemma3_plugin():
    image_seqlen = 256
    tokenizer_module = _load_tokenizer_module(model_name_or_path="google/gemma-3-4b-it")
    gemma3_plugin = get_mm_plugin(name="gemma3", image_token="<image_soft_token>")
    image_tokens_expanded = "<image_soft_token>" * image_seqlen
    check_inputs = {"plugin": gemma3_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {
            key: value.replace("<image>", f"\n\n<start_of_image>{image_tokens_expanded}<end_of_image>\n\n")
            for key, value in message.items()
        }
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
    check_inputs["expected_mm_inputs"].pop("num_crops")
    check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * 1024]
    check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[0] * 1024]}
    _check_plugin(**check_inputs)


@pytest.mark.xfail(reason="Unknown error.")
def test_internvl_plugin():
    image_seqlen = 256
    tokenizer_module = _load_tokenizer_module(model_name_or_path="OpenGVLab/InternVL3-1B-hf")
    internvl_plugin = get_mm_plugin("intern_vl", image_token="<image>", video_token="<video>")
    check_inputs = {"plugin": internvl_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {
            key: value.replace("<image>", f"<img>{'<IMG_CONTEXT>' * image_seqlen * 1}</img>")
            for key, value in message.items()
        }
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
    check_inputs["expected_mm_inputs"].pop("num_patches", None)
    _check_plugin(**check_inputs)


@pytest.mark.xfail(reason="Unknown error.")
def test_llama4_plugin():
    tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA4)
    processor = tokenizer_module["processor"]
    llama4_plugin = get_mm_plugin(name="llama4", image_token="<|image|>")
    check_inputs = {"plugin": llama4_plugin, **tokenizer_module}
    mm_inputs = _get_mm_inputs(tokenizer_module["processor"])
    image_height, image_width = mm_inputs["pixel_values"][0].shape[-2:]
    num_patches_per_chunk = int(
        (image_height // processor.patch_size) * (image_width // processor.patch_size) // processor.downsample_ratio
    )
    aspect_ratios = mm_inputs.pop("aspect_ratios")
    tokens_for_this_image = processor._prompt_split_image(aspect_ratios[0], num_patches_per_chunk)
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", tokens_for_this_image) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = mm_inputs
    _check_plugin(**check_inputs)


@pytest.mark.skipif(not is_transformers_version_greater_than("4.47.0"), reason="Requires transformers>=4.47.0")
def test_llava_plugin():
    image_seqlen = 576
    tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
    llava_plugin = get_mm_plugin(name="llava", image_token="<image>")
    check_inputs = {"plugin": llava_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
    _check_plugin(**check_inputs)


def test_llava_next_plugin():
    image_seqlen = 1176
    tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf")
    llava_next_plugin = get_mm_plugin(name="llava_next", image_token="<image>")
    check_inputs = {"plugin": llava_next_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
    _check_plugin(**check_inputs)


def test_llava_next_video_plugin():
    image_seqlen = 1176
    tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf")
    llava_next_video_plugin = get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>")
    check_inputs = {"plugin": llava_next_video_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
    _check_plugin(**check_inputs)


@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_paligemma_plugin():
    image_seqlen = 256
    tokenizer_module = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224")
    paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>")
    check_inputs = {"plugin": paligemma_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "") for key, value in message.items()} for message in MM_MESSAGES
    ]
    check_inputs["expected_input_ids"] = [
        tokenizer_module["tokenizer"].convert_tokens_to_ids(paligemma_plugin.image_token)
    ] * image_seqlen + INPUT_IDS
    check_inputs["expected_labels"] = [-100] * image_seqlen + LABELS
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
    check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * image_seqlen + [1] * (1024 - image_seqlen)]
    check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[1] * 1024]}
    _check_plugin(**check_inputs)


@pytest.mark.skipif(not is_transformers_version_greater_than("4.50.0"), reason="Requires transformers>=4.50.0")
def test_pixtral_plugin():
    image_slice_height, image_slice_width = 2, 2
    tokenizer_module = _load_tokenizer_module(model_name_or_path="mistral-community/pixtral-12b")
    pixtral_plugin = get_mm_plugin(name="pixtral", image_token="[IMG]")
    check_inputs = {"plugin": pixtral_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {
            key: value.replace(
                "<image>",
                ("{}[IMG_BREAK]".format("[IMG]" * image_slice_width) * image_slice_height).rsplit("[IMG_BREAK]", 1)[0]
                + "[IMG_END]",
            )
            for key, value in message.items()
        }
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
    check_inputs["expected_mm_inputs"]["pixel_values"] = check_inputs["expected_mm_inputs"]["pixel_values"][0]
    _check_plugin(**check_inputs)


@pytest.mark.xfail(reason="Unknown error.")
def test_qwen2_omni_plugin():
    image_seqlen = 4
    audio_seqlen = 2
    tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2.5-Omni-7B")
    qwen2_omni_plugin = get_mm_plugin(
        name="qwen2_omni", audio_token="<|AUDIO|>", image_token="<|IMAGE|>", video_token="<|VIDEO|>"
    )
    check_inputs = {"plugin": qwen2_omni_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {
            key: (
                value.replace("<image>", f"<|vision_bos|>{'<|IMAGE|>' * image_seqlen}<|vision_eos|>").replace(
                    "<audio>", f"<|audio_bos|>{'<|AUDIO|>' * audio_seqlen}<|audio_eos|>"
                )
            )
            for key, value in message.items()
        }
        for message in OMNI_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_omni_inputs(tokenizer_module["processor"])
    _check_plugin(**check_inputs)


def test_qwen2_vl_plugin():
    image_seqlen = 4
    tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
    qwen2_vl_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>")
    check_inputs = {"plugin": qwen2_vl_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {
            key: value.replace("<image>", "<|vision_start|>{}<|vision_end|>".format("<|image_pad|>" * image_seqlen))
            for key, value in message.items()
        }
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
    _check_plugin(**check_inputs)


@pytest.mark.skipif(not is_transformers_version_greater_than("4.47.0"), reason="Requires transformers>=4.47.0")
def test_video_llava_plugin():
    image_seqlen = 256
    tokenizer_module = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf")
    video_llava_plugin = get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>")
    check_inputs = {"plugin": video_llava_plugin, **tokenizer_module}
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
    _check_plugin(**check_inputs)