File size: 6,816 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer_seq2seq.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from types import MethodType
from typing import TYPE_CHECKING, Any, Optional, Union

import numpy as np
import torch
from transformers import Seq2SeqTrainer
from typing_extensions import override

from ...extras import logging
from ...extras.constants import IGNORE_INDEX
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler


if TYPE_CHECKING:
    from torch.utils.data import Dataset
    from transformers import PreTrainedTokenizer, ProcessorMixin
    from transformers.trainer import PredictionOutput

    from ...hparams import FinetuningArguments


logger = logging.get_logger(__name__)


class CustomSeq2SeqTrainer(Seq2SeqTrainer):
    r"""Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE."""

    def __init__(
        self,
        finetuning_args: "FinetuningArguments",
        processor: Optional["ProcessorMixin"],
        gen_kwargs: Optional[dict[str, Any]] = None,
        **kwargs,
    ) -> None:
        if is_transformers_version_greater_than("4.46"):
            kwargs["processing_class"] = kwargs.pop("tokenizer")
        else:
            self.processing_class: PreTrainedTokenizer = kwargs.get("tokenizer")

        super().__init__(**kwargs)
        if processor is not None:
            # avoid wrong loss under gradient accumulation
            # https://github.com/huggingface/transformers/pull/36044#issuecomment-2746657112
            self.model_accepts_loss_kwargs = False

        self.finetuning_args = finetuning_args
        if gen_kwargs is not None:
            # https://github.com/huggingface/transformers/blob/v4.45.0/src/transformers/trainer_seq2seq.py#L287
            self._gen_kwargs = gen_kwargs

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.use_badam:
            from badam import BAdamCallback, clip_grad_norm_old_version  # type: ignore

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)

    @override
    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

    @override
    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

    @override
    def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
        if self.finetuning_args.disable_shuffling:
            return torch.utils.data.SequentialSampler(self.train_dataset)

        return super()._get_train_sampler()

    @override
    def compute_loss(self, model, inputs, *args, **kwargs):
        return super().compute_loss(model, inputs, *args, **kwargs)

    @override
    def prediction_step(
        self,
        model: "torch.nn.Module",
        inputs: dict[str, Union["torch.Tensor", Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[list[str]] = None,
        **gen_kwargs,
    ) -> tuple[Optional[float], Optional["torch.Tensor"], Optional["torch.Tensor"]]:
        r"""Remove the prompt part in the generated tokens.

        Subclass and override to inject custom behavior.
        """
        if self.args.predict_with_generate:  # do not pass labels to model when generate
            labels = inputs.pop("labels", None)
        else:
            labels = inputs.get("labels")

        loss, generated_tokens, _ = super().prediction_step(
            model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys, **gen_kwargs
        )
        if generated_tokens is not None and self.args.predict_with_generate:
            generated_tokens[:, : inputs["input_ids"].size(-1)] = self.processing_class.pad_token_id
            generated_tokens = generated_tokens.contiguous()

        return loss, generated_tokens, labels

    def save_predictions(
        self, dataset: "Dataset", predict_results: "PredictionOutput", skip_special_tokens: bool = True
    ) -> None:
        r"""Save model predictions to `output_dir`.

        A custom behavior that not contained in Seq2SeqTrainer.
        """
        if not self.is_world_process_zero():
            return

        output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
        logger.info_rank0(f"Saving prediction results to {output_prediction_file}")

        labels = np.where(
            predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.processing_class.pad_token_id
        )
        preds = np.where(
            predict_results.predictions != IGNORE_INDEX,
            predict_results.predictions,
            self.processing_class.pad_token_id,
        )

        for i in range(len(preds)):
            pad_len = np.nonzero(preds[i] != self.processing_class.pad_token_id)[0]
            if len(pad_len):  # move pad token to last
                preds[i] = np.concatenate((preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1)

        decoded_inputs = self.processing_class.batch_decode(dataset["input_ids"], skip_special_tokens=False)
        decoded_preds = self.processing_class.batch_decode(preds, skip_special_tokens=skip_special_tokens)
        decoded_labels = self.processing_class.batch_decode(labels, skip_special_tokens=skip_special_tokens)

        with open(output_prediction_file, "w", encoding="utf-8") as f:
            for text, pred, label in zip(decoded_inputs, decoded_preds, decoded_labels):
                f.write(json.dumps({"prompt": text, "predict": pred, "label": label}, ensure_ascii=False) + "\n")