File size: 16,323 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
from dataclasses import asdict, dataclass, field, fields
from typing import Any, Literal, Optional, Union

import torch
from transformers.training_args import _convert_str_dict
from typing_extensions import Self

from ..extras.constants import AttentionFunction, EngineName, QuantizationMethod, RopeScaling


@dataclass
class BaseModelArguments:
    r"""Arguments pertaining to the model."""

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
        },
    )
    adapter_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Path to the adapter weight or identifier from huggingface.co/models. "
                "Use commas to separate multiple adapters."
            )
        },
    )
    adapter_folder: Optional[str] = field(
        default=None,
        metadata={"help": "The folder containing the adapter weights to load."},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
    )
    resize_vocab: bool = field(
        default=False,
        metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
    )
    split_special_tokens: bool = field(
        default=False,
        metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
    )
    add_tokens: Optional[str] = field(
        default=None,
        metadata={
            "help": "Non-special tokens to be added into the tokenizer. Use commas to separate multiple tokens."
        },
    )
    add_special_tokens: Optional[str] = field(
        default=None,
        metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    low_cpu_mem_usage: bool = field(
        default=True,
        metadata={"help": "Whether or not to use memory-efficient model loading."},
    )
    rope_scaling: Optional[RopeScaling] = field(
        default=None,
        metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
    )
    flash_attn: AttentionFunction = field(
        default=AttentionFunction.AUTO,
        metadata={"help": "Enable FlashAttention for faster training and inference."},
    )
    shift_attn: bool = field(
        default=False,
        metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
    )
    mixture_of_depths: Optional[Literal["convert", "load"]] = field(
        default=None,
        metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
    )
    use_unsloth: bool = field(
        default=False,
        metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
    )
    use_unsloth_gc: bool = field(
        default=False,
        metadata={"help": "Whether or not to use unsloth's gradient checkpointing (no need to install unsloth)."},
    )
    enable_liger_kernel: bool = field(
        default=False,
        metadata={"help": "Whether or not to enable liger kernel for faster training."},
    )
    moe_aux_loss_coef: Optional[float] = field(
        default=None,
        metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
    )
    disable_gradient_checkpointing: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable gradient checkpointing."},
    )
    use_reentrant_gc: bool = field(
        default=True,
        metadata={"help": "Whether or not to use reentrant gradient checkpointing."},
    )
    upcast_layernorm: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
    )
    upcast_lmhead_output: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
    )
    train_from_scratch: bool = field(
        default=False,
        metadata={"help": "Whether or not to randomly initialize the model weights."},
    )
    infer_backend: EngineName = field(
        default=EngineName.HF,
        metadata={"help": "Backend engine used at inference."},
    )
    offload_folder: str = field(
        default="offload",
        metadata={"help": "Path to offload model weights."},
    )
    use_cache: bool = field(
        default=True,
        metadata={"help": "Whether or not to use KV cache in generation."},
    )
    infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
        default="auto",
        metadata={"help": "Data type for model weights and activations at inference."},
    )
    hf_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with Hugging Face Hub."},
    )
    ms_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with ModelScope Hub."},
    )
    om_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with Modelers Hub."},
    )
    print_param_status: bool = field(
        default=False,
        metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={"help": "Whether to trust the execution of code from datasets/models defined on the Hub or not."},
    )

    def __post_init__(self):
        if self.model_name_or_path is None:
            raise ValueError("Please provide `model_name_or_path`.")

        if self.split_special_tokens and self.use_fast_tokenizer:
            raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")

        if self.adapter_name_or_path is not None:  # support merging multiple lora weights
            self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]

        if self.add_tokens is not None:  # support multiple tokens
            self.add_tokens = [token.strip() for token in self.add_tokens.split(",")]

        if self.add_special_tokens is not None:  # support multiple special tokens
            self.add_special_tokens = [token.strip() for token in self.add_special_tokens.split(",")]


@dataclass
class QuantizationArguments:
    r"""Arguments pertaining to the quantization method."""

    quantization_method: QuantizationMethod = field(
        default=QuantizationMethod.BNB,
        metadata={"help": "Quantization method to use for on-the-fly quantization."},
    )
    quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the model using on-the-fly quantization."},
    )
    quantization_type: Literal["fp4", "nf4"] = field(
        default="nf4",
        metadata={"help": "Quantization data type to use in bitsandbytes int4 training."},
    )
    double_quantization: bool = field(
        default=True,
        metadata={"help": "Whether or not to use double quantization in bitsandbytes int4 training."},
    )
    quantization_device_map: Optional[Literal["auto"]] = field(
        default=None,
        metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
    )


@dataclass
class ProcessorArguments:
    r"""Arguments pertaining to the image processor."""

    image_max_pixels: int = field(
        default=768 * 768,
        metadata={"help": "The maximum number of pixels of image inputs."},
    )
    image_min_pixels: int = field(
        default=32 * 32,
        metadata={"help": "The minimum number of pixels of image inputs."},
    )
    image_do_pan_and_scan: bool = field(
        default=False,
        metadata={"help": "Use pan and scan to process image for gemma3."},
    )
    crop_to_patches: bool = field(
        default=False,
        metadata={"help": "Whether to crop the image to patches for internvl."},
    )
    use_audio_in_video: bool = field(
        default=False,
        metadata={"help": "Whether or not to use audio in video inputs."},
    )
    video_max_pixels: int = field(
        default=256 * 256,
        metadata={"help": "The maximum number of pixels of video inputs."},
    )
    video_min_pixels: int = field(
        default=16 * 16,
        metadata={"help": "The minimum number of pixels of video inputs."},
    )
    video_fps: float = field(
        default=2.0,
        metadata={"help": "The frames to sample per second for video inputs."},
    )
    video_maxlen: int = field(
        default=128,
        metadata={"help": "The maximum number of sampled frames for video inputs."},
    )
    audio_sampling_rate: int = field(
        default=16000,
        metadata={"help": "The sampling rate of audio inputs."},
    )

    def __post_init__(self):
        if self.image_max_pixels < self.image_min_pixels:
            raise ValueError("`image_max_pixels` cannot be smaller than `image_min_pixels`.")

        if self.video_max_pixels < self.video_min_pixels:
            raise ValueError("`video_max_pixels` cannot be smaller than `video_min_pixels`.")


@dataclass
class ExportArguments:
    r"""Arguments pertaining to the model export."""

    export_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the directory to save the exported model."},
    )
    export_size: int = field(
        default=5,
        metadata={"help": "The file shard size (in GB) of the exported model."},
    )
    export_device: Literal["cpu", "auto"] = field(
        default="cpu",
        metadata={"help": "The device used in model export, use `auto` to accelerate exporting."},
    )
    export_quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the exported model."},
    )
    export_quantization_dataset: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
    )
    export_quantization_nsamples: int = field(
        default=128,
        metadata={"help": "The number of samples used for quantization."},
    )
    export_quantization_maxlen: int = field(
        default=1024,
        metadata={"help": "The maximum length of the model inputs used for quantization."},
    )
    export_legacy_format: bool = field(
        default=False,
        metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
    )
    export_hub_model_id: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
    )

    def __post_init__(self):
        if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
            raise ValueError("Quantization dataset is necessary for exporting.")


@dataclass
class VllmArguments:
    r"""Arguments pertaining to the vLLM worker."""

    vllm_maxlen: int = field(
        default=4096,
        metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
    )
    vllm_gpu_util: float = field(
        default=0.7,
        metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
    )
    vllm_enforce_eager: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
    )
    vllm_max_lora_rank: int = field(
        default=32,
        metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
    )
    vllm_config: Optional[Union[dict, str]] = field(
        default=None,
        metadata={"help": "Config to initialize the vllm engine. Please use JSON strings."},
    )

    def __post_init__(self):
        if isinstance(self.vllm_config, str) and self.vllm_config.startswith("{"):
            self.vllm_config = _convert_str_dict(json.loads(self.vllm_config))


@dataclass
class SGLangArguments:
    r"""Arguments pertaining to the SGLang worker."""

    sglang_maxlen: int = field(
        default=4096,
        metadata={"help": "Maximum sequence (prompt + response) length of the SGLang engine."},
    )
    sglang_mem_fraction: float = field(
        default=0.7,
        metadata={"help": "The memory fraction (0-1) to be used for the SGLang engine."},
    )
    sglang_tp_size: int = field(
        default=-1,
        metadata={"help": "Tensor parallel size for the SGLang engine."},
    )
    sglang_config: Optional[Union[dict, str]] = field(
        default=None,
        metadata={"help": "Config to initialize the SGLang engine. Please use JSON strings."},
    )

    def __post_init__(self):
        if isinstance(self.sglang_config, str) and self.sglang_config.startswith("{"):
            self.sglang_config = _convert_str_dict(json.loads(self.sglang_config))


@dataclass
class ModelArguments(
    SGLangArguments, VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments
):
    r"""Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.

    The class on the most right will be displayed first.
    """

    compute_dtype: Optional[torch.dtype] = field(
        default=None,
        init=False,
        metadata={"help": "Torch data type for computing model outputs, derived from `fp/bf16`. Do not specify it."},
    )
    device_map: Optional[Union[str, dict[str, Any]]] = field(
        default=None,
        init=False,
        metadata={"help": "Device map for model placement, derived from training stage. Do not specify it."},
    )
    model_max_length: Optional[int] = field(
        default=None,
        init=False,
        metadata={"help": "The maximum input length for model, derived from `cutoff_len`. Do not specify it."},
    )
    block_diag_attn: bool = field(
        default=False,
        init=False,
        metadata={"help": "Whether use block diag attention or not, derived from `neat_packing`. Do not specify it."},
    )

    def __post_init__(self):
        BaseModelArguments.__post_init__(self)
        ProcessorArguments.__post_init__(self)
        ExportArguments.__post_init__(self)
        VllmArguments.__post_init__(self)
        SGLangArguments.__post_init__(self)

    @classmethod
    def copyfrom(cls, source: "Self", **kwargs) -> "Self":
        init_args, lazy_args = {}, {}
        for attr in fields(source):
            if attr.init:
                init_args[attr.name] = getattr(source, attr.name)
            else:
                lazy_args[attr.name] = getattr(source, attr.name)

        init_args.update(kwargs)
        result = cls(**init_args)
        for name, value in lazy_args.items():
            setattr(result, name, value)

        return result

    def to_dict(self) -> dict[str, Any]:
        args = asdict(self)
        args = {k: f"<{k.upper()}>" if k.endswith("token") else v for k, v in args.items()}
        return args