File size: 9,725 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional

from ...extras import logging
from ...extras.constants import IGNORE_INDEX
from .processor_utils import DatasetProcessor, greedy_knapsack, infer_seqlen


if TYPE_CHECKING:
    from ..mm_plugin import AudioInput, ImageInput, VideoInput


logger = logging.get_logger(__name__)


@dataclass
class SupervisedDatasetProcessor(DatasetProcessor):
    def _encode_data_example(
        self,
        prompt: list[dict[str, str]],
        response: list[dict[str, str]],
        system: Optional[str],
        tools: Optional[str],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
    ) -> tuple[list[int], list[int]]:
        messages = self.template.mm_plugin.process_messages(prompt + response, images, videos, audios, self.processor)
        input_ids, labels = self.template.mm_plugin.process_token_ids(
            [], [], images, videos, audios, self.tokenizer, self.processor
        )
        encoded_pairs = self.template.encode_multiturn(self.tokenizer, messages, system, tools)
        total_length = len(input_ids) + (1 if self.template.efficient_eos else 0)
        if self.data_args.mask_history:
            encoded_pairs = encoded_pairs[::-1]  # high priority for last turns

        for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs):
            if total_length >= self.data_args.cutoff_len:
                break

            source_len, target_len = infer_seqlen(
                len(source_ids), len(target_ids), self.data_args.cutoff_len - total_length
            )
            source_ids = source_ids[:source_len]
            target_ids = target_ids[:target_len]
            total_length += source_len + target_len

            if self.data_args.train_on_prompt:
                source_label = source_ids
            elif self.template.efficient_eos:
                source_label = [self.tokenizer.eos_token_id] + [IGNORE_INDEX] * (source_len - 1)
            else:
                source_label = [IGNORE_INDEX] * source_len

            if self.data_args.mask_history and turn_idx != 0:  # train on the last turn only
                target_label = [IGNORE_INDEX] * target_len
            else:
                target_label = target_ids

            if self.data_args.mask_history:  # reversed sequences
                input_ids = source_ids + target_ids + input_ids
                labels = source_label + target_label + labels
            else:
                input_ids += source_ids + target_ids
                labels += source_label + target_label

        if self.template.efficient_eos:
            input_ids += [self.tokenizer.eos_token_id]
            labels += [self.tokenizer.eos_token_id]

        return input_ids, labels

    def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]:
        # build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
        # for multiturn examples, we only mask the prompt part in each prompt-response pair.
        model_inputs = defaultdict(list)
        for i in range(len(examples["_prompt"])):
            if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1:
                logger.warning_rank0(
                    "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
                )
                continue

            input_ids, labels = self._encode_data_example(
                prompt=examples["_prompt"][i],
                response=examples["_response"][i],
                system=examples["_system"][i],
                tools=examples["_tools"][i],
                images=examples["_images"][i] or [],
                videos=examples["_videos"][i] or [],
                audios=examples["_audios"][i] or [],
            )
            model_inputs["input_ids"].append(input_ids)
            model_inputs["attention_mask"].append([1] * len(input_ids))
            model_inputs["labels"].append(labels)
            model_inputs["images"].append(examples["_images"][i])
            model_inputs["videos"].append(examples["_videos"][i])
            model_inputs["audios"].append(examples["_audios"][i])

        return model_inputs

    def print_data_example(self, example: dict[str, list[int]]) -> None:
        valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
        print("input_ids:\n{}".format(example["input_ids"]))
        print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
        print("label_ids:\n{}".format(example["labels"]))
        print(f"labels:\n{self.tokenizer.decode(valid_labels, skip_special_tokens=False)}")


@dataclass
class PackedSupervisedDatasetProcessor(SupervisedDatasetProcessor):
    def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]:
        # TODO: use `position_ids` to achieve packing
        # build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
        # and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
        valid_num = 0
        batch_input_ids, batch_labels, batch_images, batch_videos, batch_audios = [], [], [], [], []
        lengths = []
        length2indexes = defaultdict(list)
        for i in range(len(examples["_prompt"])):
            if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1:
                logger.warning_rank0(
                    "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
                )
                continue

            input_ids, labels = self._encode_data_example(
                prompt=examples["_prompt"][i],
                response=examples["_response"][i],
                system=examples["_system"][i],
                tools=examples["_tools"][i],
                images=examples["_images"][i] or [],
                videos=examples["_videos"][i] or [],
                audios=examples["_audios"][i] or [],
            )
            length = len(input_ids)
            if length > self.data_args.cutoff_len:
                logger.warning_rank0(f"Dropped lengthy example with length {length} > {self.data_args.cutoff_len}.")
            else:
                lengths.append(length)
                length2indexes[length].append(valid_num)
                batch_input_ids.append(input_ids)
                batch_labels.append(labels)
                batch_images.append(examples["_images"][i] or [])
                batch_videos.append(examples["_videos"][i] or [])
                batch_audios.append(examples["_audios"][i] or [])
                valid_num += 1

        model_inputs = defaultdict(list)
        knapsacks = greedy_knapsack(lengths, self.data_args.cutoff_len)
        for knapsack in knapsacks:
            packed_input_ids, packed_attention_masks, packed_position_ids, packed_labels = [], [], [], []
            packed_images, packed_videos, packed_audios = [], [], []
            for i, length in enumerate(knapsack):
                index = length2indexes[length].pop()
                packed_input_ids += batch_input_ids[index]
                packed_position_ids += list(range(len(batch_input_ids[index])))  # NOTE: pad_to_multiple_of ignore this
                packed_labels += batch_labels[index]
                packed_images += batch_images[index]
                packed_videos += batch_videos[index]
                packed_audios += batch_audios[index]
                if self.data_args.neat_packing:
                    packed_attention_masks += [i + 1] * len(batch_input_ids[index])  # start from 1
                else:
                    packed_attention_masks += [1] * len(batch_input_ids[index])

            if len(packed_input_ids) < self.data_args.cutoff_len + 1:  # avoid flash_attn drops attn mask
                pad_length = self.data_args.cutoff_len - len(packed_input_ids) + 1
                packed_input_ids += [self.tokenizer.pad_token_id] * pad_length
                packed_position_ids += [0] * pad_length
                packed_labels += [IGNORE_INDEX] * pad_length
                if self.data_args.neat_packing:
                    packed_attention_masks += [0] * pad_length
                else:
                    packed_attention_masks += [1] * pad_length  # more efficient flash_attn

            if len(packed_input_ids) != self.data_args.cutoff_len + 1:
                raise ValueError("The length of packed example should be identical to the cutoff length.")

            model_inputs["input_ids"].append(packed_input_ids)
            model_inputs["attention_mask"].append(packed_attention_masks)
            model_inputs["position_ids"].append(packed_position_ids)
            model_inputs["labels"].append(packed_labels)
            model_inputs["images"].append(packed_images or None)
            model_inputs["videos"].append(packed_videos or None)
            model_inputs["audios"].append(packed_audios or None)

        return model_inputs