File size: 13,945 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import TYPE_CHECKING, Literal, Optional, Union

import numpy as np
from datasets import Dataset, load_dataset, load_from_disk

from ..extras import logging
from ..extras.constants import FILEEXT2TYPE
from ..extras.misc import check_version, has_tokenized_data
from .converter import align_dataset
from .data_utils import get_dataset_module, merge_dataset, read_cloud_json, split_dataset
from .parser import get_dataset_list
from .processor import (
    FeedbackDatasetProcessor,
    PackedSupervisedDatasetProcessor,
    PairwiseDatasetProcessor,
    PretrainDatasetProcessor,
    SupervisedDatasetProcessor,
    UnsupervisedDatasetProcessor,
)


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments

    from ..hparams import DataArguments, ModelArguments
    from .data_utils import DatasetModule
    from .parser import DatasetAttr
    from .processor import DatasetProcessor
    from .template import Template


logger = logging.get_logger(__name__)


def _load_single_dataset(
    dataset_attr: "DatasetAttr",
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
    r"""Load a single dataset and aligns it to the standard format."""
    logger.info_rank0(f"Loading dataset {dataset_attr}...")
    data_path, data_name, data_dir, data_files = None, None, None, None
    if dataset_attr.load_from in ["hf_hub", "ms_hub", "om_hub"]:
        data_path = dataset_attr.dataset_name
        data_name = dataset_attr.subset
        data_dir = dataset_attr.folder

    elif dataset_attr.load_from == "script":
        data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
        data_name = dataset_attr.subset
        data_dir = dataset_attr.folder

    elif dataset_attr.load_from == "cloud_file":
        data_path = dataset_attr.dataset_name

    elif dataset_attr.load_from == "file":
        data_files = []
        local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
        if os.path.isdir(local_path):  # is directory
            for file_name in os.listdir(local_path):
                data_files.append(os.path.join(local_path, file_name))
        elif os.path.isfile(local_path):  # is file
            data_files.append(local_path)
        else:
            raise ValueError(f"File {local_path} not found.")

        data_path = FILEEXT2TYPE.get(os.path.splitext(data_files[0])[-1][1:], None)
        if data_path is None:
            raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys())))

        if any(data_path != FILEEXT2TYPE.get(os.path.splitext(data_file)[-1][1:], None) for data_file in data_files):
            raise ValueError("File types should be identical.")
    else:
        raise NotImplementedError(f"Unknown load type: {dataset_attr.load_from}.")

    if dataset_attr.load_from == "ms_hub":
        check_version("modelscope>=1.11.0", mandatory=True)
        from modelscope import MsDataset  # type: ignore
        from modelscope.utils.config_ds import MS_DATASETS_CACHE  # type: ignore

        cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
        dataset = MsDataset.load(
            dataset_name=data_path,
            subset_name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=cache_dir,
            token=model_args.ms_hub_token,
            use_streaming=data_args.streaming,
        )
        if isinstance(dataset, MsDataset):
            dataset = dataset.to_hf_dataset()

    elif dataset_attr.load_from == "om_hub":
        check_version("openmind>=0.8.0", mandatory=True)
        from openmind import OmDataset  # type: ignore
        from openmind.utils.hub import OM_DATASETS_CACHE  # type: ignore

        cache_dir = model_args.cache_dir or OM_DATASETS_CACHE
        dataset = OmDataset.load_dataset(
            path=data_path,
            name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=cache_dir,
            token=model_args.om_hub_token,
            streaming=data_args.streaming,
        )
    elif dataset_attr.load_from == "cloud_file":
        dataset = Dataset.from_list(read_cloud_json(data_path), split=dataset_attr.split)
    else:
        dataset = load_dataset(
            path=data_path,
            name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=model_args.cache_dir,
            token=model_args.hf_hub_token,
            num_proc=data_args.preprocessing_num_workers,
            trust_remote_code=model_args.trust_remote_code,
            streaming=data_args.streaming and dataset_attr.load_from != "file",
        )
        if data_args.streaming and dataset_attr.load_from == "file":
            dataset = dataset.to_iterable_dataset(num_shards=training_args.dataloader_num_workers)

    if dataset_attr.num_samples is not None and not data_args.streaming:
        target_num = dataset_attr.num_samples
        indexes = np.random.permutation(len(dataset))[:target_num]  # all samples should be included
        target_num -= len(indexes)
        if target_num > 0:
            expand_indexes = np.random.choice(len(dataset), target_num)
            indexes = np.concatenate((indexes, expand_indexes), axis=0)

        assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched."
        dataset = dataset.select(indexes)
        logger.info_rank0(f"Sampled {dataset_attr.num_samples} examples from dataset {dataset_attr}.")

    if data_args.max_samples is not None:  # truncate dataset
        max_samples = min(data_args.max_samples, len(dataset))
        dataset = dataset.select(range(max_samples))

    return align_dataset(dataset, dataset_attr, data_args, training_args)


def _get_merged_dataset(
    dataset_names: Optional[list[str]],
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    return_dict: bool = False,
) -> Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]]:
    r"""Return the merged datasets in the standard format."""
    if dataset_names is None:
        return None

    datasets = {}
    for dataset_name, dataset_attr in zip(dataset_names, get_dataset_list(dataset_names, data_args.dataset_dir)):
        if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
            raise ValueError("The dataset is not applicable in the current training stage.")

        datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args)

    if return_dict:
        return datasets
    else:
        return merge_dataset(list(datasets.values()), data_args, seed=training_args.seed)


def _get_dataset_processor(
    data_args: "DataArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
    do_generate: bool = False,
) -> "DatasetProcessor":
    r"""Return the corresponding dataset processor."""
    if stage == "pt":
        dataset_processor_class = PretrainDatasetProcessor
    elif stage == "sft" and not do_generate:
        if data_args.packing:
            if data_args.neat_packing:  # hack datasets to have int32 attention mask
                from datasets.arrow_writer import OptimizedTypedSequence, TypedSequence

                def __init__(self, data, **kwargs):
                    return TypedSequence.__init__(
                        self,
                        data,
                        type=kwargs.pop("type", None),
                        try_type=kwargs.pop("try_type", None),
                        optimized_int_type=kwargs.pop("optimized_int_type", None),
                    )

                OptimizedTypedSequence.__init__ = __init__
            dataset_processor_class = PackedSupervisedDatasetProcessor
        else:
            dataset_processor_class = SupervisedDatasetProcessor

    elif stage == "rm":
        dataset_processor_class = PairwiseDatasetProcessor
    elif stage == "kto":
        dataset_processor_class = FeedbackDatasetProcessor
    else:
        dataset_processor_class = UnsupervisedDatasetProcessor

    return dataset_processor_class(template=template, tokenizer=tokenizer, processor=processor, data_args=data_args)


def _get_preprocessed_dataset(
    dataset: Optional[Union["Dataset", "IterableDataset"]],
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"] = None,
    is_eval: bool = False,
) -> Optional[Union["Dataset", "IterableDataset"]]:
    r"""Preprocesses the dataset, including format checking and tokenization."""
    if dataset is None:
        return None

    dataset_processor = _get_dataset_processor(
        data_args, stage, template, tokenizer, processor, do_generate=(training_args.predict_with_generate and is_eval)
    )
    column_names = list(next(iter(dataset)).keys())
    kwargs = {}
    if not data_args.streaming:
        kwargs = dict(
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
            desc="Running tokenizer on dataset",
        )

    dataset = dataset.map(
        dataset_processor.preprocess_dataset,
        batched=True,
        batch_size=data_args.preprocessing_batch_size,
        remove_columns=column_names,
        **kwargs,
    )

    if training_args.should_log:
        try:
            print("eval example:" if is_eval else "training example:")
            dataset_processor.print_data_example(next(iter(dataset)))
        except StopIteration:
            if stage == "pt":
                raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.")
            else:
                raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")

    return dataset


def get_dataset(
    template: "Template",
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"] = None,
) -> "DatasetModule":
    r"""Get the train dataset and optionally gets the evaluation dataset."""
    # Load tokenized dataset if path exists
    if data_args.tokenized_path is not None:
        if has_tokenized_data(data_args.tokenized_path):
            logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
            tokenized_data = load_from_disk(data_args.tokenized_path)
            dataset_module = get_dataset_module(tokenized_data)
            if data_args.streaming:
                dataset_module["train_dataset"] = dataset_module["train_dataset"].to_iterable_dataset()

            logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
            return dataset_module

        if data_args.streaming:
            raise ValueError("Turn off `streaming` when saving dataset to disk.")

    # Load and preprocess dataset
    with training_args.main_process_first(desc="load dataset"):
        dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage)
        eval_dataset = _get_merged_dataset(
            data_args.eval_dataset,
            model_args,
            data_args,
            training_args,
            stage,
            return_dict=data_args.eval_on_each_dataset,
        )

    with training_args.main_process_first(desc="pre-process dataset"):
        dataset = _get_preprocessed_dataset(
            dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=False
        )
        if isinstance(eval_dataset, dict):
            for eval_name, eval_data in eval_dataset.items():
                eval_dataset[eval_name] = _get_preprocessed_dataset(
                    eval_data, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
                )
        else:
            eval_dataset = _get_preprocessed_dataset(
                eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
            )

        dataset_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
        if data_args.tokenized_path is not None:  # save tokenized dataset to disk
            if training_args.should_save:
                dataset_dict.save_to_disk(data_args.tokenized_path)
                logger.info_rank0(f"Tokenized dataset is saved at {data_args.tokenized_path}.")
                logger.info_rank0(f"Please launch the training with `tokenized_path: {data_args.tokenized_path}`.")

        return get_dataset_module(dataset_dict)