Spaces:
Running
Running
File size: 13,945 Bytes
e81015c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING, Literal, Optional, Union
import numpy as np
from datasets import Dataset, load_dataset, load_from_disk
from ..extras import logging
from ..extras.constants import FILEEXT2TYPE
from ..extras.misc import check_version, has_tokenized_data
from .converter import align_dataset
from .data_utils import get_dataset_module, merge_dataset, read_cloud_json, split_dataset
from .parser import get_dataset_list
from .processor import (
FeedbackDatasetProcessor,
PackedSupervisedDatasetProcessor,
PairwiseDatasetProcessor,
PretrainDatasetProcessor,
SupervisedDatasetProcessor,
UnsupervisedDatasetProcessor,
)
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments
from ..hparams import DataArguments, ModelArguments
from .data_utils import DatasetModule
from .parser import DatasetAttr
from .processor import DatasetProcessor
from .template import Template
logger = logging.get_logger(__name__)
def _load_single_dataset(
dataset_attr: "DatasetAttr",
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
r"""Load a single dataset and aligns it to the standard format."""
logger.info_rank0(f"Loading dataset {dataset_attr}...")
data_path, data_name, data_dir, data_files = None, None, None, None
if dataset_attr.load_from in ["hf_hub", "ms_hub", "om_hub"]:
data_path = dataset_attr.dataset_name
data_name = dataset_attr.subset
data_dir = dataset_attr.folder
elif dataset_attr.load_from == "script":
data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
data_name = dataset_attr.subset
data_dir = dataset_attr.folder
elif dataset_attr.load_from == "cloud_file":
data_path = dataset_attr.dataset_name
elif dataset_attr.load_from == "file":
data_files = []
local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
if os.path.isdir(local_path): # is directory
for file_name in os.listdir(local_path):
data_files.append(os.path.join(local_path, file_name))
elif os.path.isfile(local_path): # is file
data_files.append(local_path)
else:
raise ValueError(f"File {local_path} not found.")
data_path = FILEEXT2TYPE.get(os.path.splitext(data_files[0])[-1][1:], None)
if data_path is None:
raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys())))
if any(data_path != FILEEXT2TYPE.get(os.path.splitext(data_file)[-1][1:], None) for data_file in data_files):
raise ValueError("File types should be identical.")
else:
raise NotImplementedError(f"Unknown load type: {dataset_attr.load_from}.")
if dataset_attr.load_from == "ms_hub":
check_version("modelscope>=1.11.0", mandatory=True)
from modelscope import MsDataset # type: ignore
from modelscope.utils.config_ds import MS_DATASETS_CACHE # type: ignore
cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
dataset = MsDataset.load(
dataset_name=data_path,
subset_name=data_name,
data_dir=data_dir,
data_files=data_files,
split=dataset_attr.split,
cache_dir=cache_dir,
token=model_args.ms_hub_token,
use_streaming=data_args.streaming,
)
if isinstance(dataset, MsDataset):
dataset = dataset.to_hf_dataset()
elif dataset_attr.load_from == "om_hub":
check_version("openmind>=0.8.0", mandatory=True)
from openmind import OmDataset # type: ignore
from openmind.utils.hub import OM_DATASETS_CACHE # type: ignore
cache_dir = model_args.cache_dir or OM_DATASETS_CACHE
dataset = OmDataset.load_dataset(
path=data_path,
name=data_name,
data_dir=data_dir,
data_files=data_files,
split=dataset_attr.split,
cache_dir=cache_dir,
token=model_args.om_hub_token,
streaming=data_args.streaming,
)
elif dataset_attr.load_from == "cloud_file":
dataset = Dataset.from_list(read_cloud_json(data_path), split=dataset_attr.split)
else:
dataset = load_dataset(
path=data_path,
name=data_name,
data_dir=data_dir,
data_files=data_files,
split=dataset_attr.split,
cache_dir=model_args.cache_dir,
token=model_args.hf_hub_token,
num_proc=data_args.preprocessing_num_workers,
trust_remote_code=model_args.trust_remote_code,
streaming=data_args.streaming and dataset_attr.load_from != "file",
)
if data_args.streaming and dataset_attr.load_from == "file":
dataset = dataset.to_iterable_dataset(num_shards=training_args.dataloader_num_workers)
if dataset_attr.num_samples is not None and not data_args.streaming:
target_num = dataset_attr.num_samples
indexes = np.random.permutation(len(dataset))[:target_num] # all samples should be included
target_num -= len(indexes)
if target_num > 0:
expand_indexes = np.random.choice(len(dataset), target_num)
indexes = np.concatenate((indexes, expand_indexes), axis=0)
assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched."
dataset = dataset.select(indexes)
logger.info_rank0(f"Sampled {dataset_attr.num_samples} examples from dataset {dataset_attr}.")
if data_args.max_samples is not None: # truncate dataset
max_samples = min(data_args.max_samples, len(dataset))
dataset = dataset.select(range(max_samples))
return align_dataset(dataset, dataset_attr, data_args, training_args)
def _get_merged_dataset(
dataset_names: Optional[list[str]],
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
return_dict: bool = False,
) -> Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]]:
r"""Return the merged datasets in the standard format."""
if dataset_names is None:
return None
datasets = {}
for dataset_name, dataset_attr in zip(dataset_names, get_dataset_list(dataset_names, data_args.dataset_dir)):
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
raise ValueError("The dataset is not applicable in the current training stage.")
datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args)
if return_dict:
return datasets
else:
return merge_dataset(list(datasets.values()), data_args, seed=training_args.seed)
def _get_dataset_processor(
data_args: "DataArguments",
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
do_generate: bool = False,
) -> "DatasetProcessor":
r"""Return the corresponding dataset processor."""
if stage == "pt":
dataset_processor_class = PretrainDatasetProcessor
elif stage == "sft" and not do_generate:
if data_args.packing:
if data_args.neat_packing: # hack datasets to have int32 attention mask
from datasets.arrow_writer import OptimizedTypedSequence, TypedSequence
def __init__(self, data, **kwargs):
return TypedSequence.__init__(
self,
data,
type=kwargs.pop("type", None),
try_type=kwargs.pop("try_type", None),
optimized_int_type=kwargs.pop("optimized_int_type", None),
)
OptimizedTypedSequence.__init__ = __init__
dataset_processor_class = PackedSupervisedDatasetProcessor
else:
dataset_processor_class = SupervisedDatasetProcessor
elif stage == "rm":
dataset_processor_class = PairwiseDatasetProcessor
elif stage == "kto":
dataset_processor_class = FeedbackDatasetProcessor
else:
dataset_processor_class = UnsupervisedDatasetProcessor
return dataset_processor_class(template=template, tokenizer=tokenizer, processor=processor, data_args=data_args)
def _get_preprocessed_dataset(
dataset: Optional[Union["Dataset", "IterableDataset"]],
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"] = None,
is_eval: bool = False,
) -> Optional[Union["Dataset", "IterableDataset"]]:
r"""Preprocesses the dataset, including format checking and tokenization."""
if dataset is None:
return None
dataset_processor = _get_dataset_processor(
data_args, stage, template, tokenizer, processor, do_generate=(training_args.predict_with_generate and is_eval)
)
column_names = list(next(iter(dataset)).keys())
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
desc="Running tokenizer on dataset",
)
dataset = dataset.map(
dataset_processor.preprocess_dataset,
batched=True,
batch_size=data_args.preprocessing_batch_size,
remove_columns=column_names,
**kwargs,
)
if training_args.should_log:
try:
print("eval example:" if is_eval else "training example:")
dataset_processor.print_data_example(next(iter(dataset)))
except StopIteration:
if stage == "pt":
raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.")
else:
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
return dataset
def get_dataset(
template: "Template",
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"] = None,
) -> "DatasetModule":
r"""Get the train dataset and optionally gets the evaluation dataset."""
# Load tokenized dataset if path exists
if data_args.tokenized_path is not None:
if has_tokenized_data(data_args.tokenized_path):
logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
tokenized_data = load_from_disk(data_args.tokenized_path)
dataset_module = get_dataset_module(tokenized_data)
if data_args.streaming:
dataset_module["train_dataset"] = dataset_module["train_dataset"].to_iterable_dataset()
logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
return dataset_module
if data_args.streaming:
raise ValueError("Turn off `streaming` when saving dataset to disk.")
# Load and preprocess dataset
with training_args.main_process_first(desc="load dataset"):
dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage)
eval_dataset = _get_merged_dataset(
data_args.eval_dataset,
model_args,
data_args,
training_args,
stage,
return_dict=data_args.eval_on_each_dataset,
)
with training_args.main_process_first(desc="pre-process dataset"):
dataset = _get_preprocessed_dataset(
dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=False
)
if isinstance(eval_dataset, dict):
for eval_name, eval_data in eval_dataset.items():
eval_dataset[eval_name] = _get_preprocessed_dataset(
eval_data, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
)
else:
eval_dataset = _get_preprocessed_dataset(
eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
)
dataset_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
if data_args.tokenized_path is not None: # save tokenized dataset to disk
if training_args.should_save:
dataset_dict.save_to_disk(data_args.tokenized_path)
logger.info_rank0(f"Tokenized dataset is saved at {data_args.tokenized_path}.")
logger.info_rank0(f"Please launch the training with `tokenized_path: {data_args.tokenized_path}`.")
return get_dataset_module(dataset_dict)
|