File size: 13,603 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright 2025 OpenAccess AI Collective and the LlamaFactory team.
#
# This code is inspired by the OpenAccess AI Collective's axolotl library.
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/utils.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Literal, Optional

import numpy as np
import torch
import torch.nn.functional as F
from transformers import DataCollatorForSeq2Seq

from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER
from ..extras.packages import is_pillow_available


if is_pillow_available():
    from PIL import Image


if TYPE_CHECKING:
    from transformers import ProcessorMixin

    from .template import Template


def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor":
    r"""Expand 2d attention mask to 4d attention mask.

    Expand the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len),
    handle packed sequences and transforms the mask to lower triangular form to prevent future peeking.

    e.g.
    ```python
    # input
    [[1, 1, 2, 2, 2, 0]]
    # output
    [
        [
            [
                [o, x, x, x, x, x],
                [o, o, x, x, x, x],
                [x, x, o, x, x, x],
                [x, x, o, o, x, x],
                [x, x, o, o, o, x],
                [x, x, x, x, x, x],
            ]
        ]
    ]
    ```
    where `o` equals to `0.0`, `x` equals to `min_dtype`.
    """
    _, seq_len = attention_mask_with_indices.size()
    min_dtype = torch.finfo(dtype).min
    zero_tensor = torch.tensor(0, dtype=dtype)

    # Create a non-padding mask.
    non_padding_mask = (attention_mask_with_indices != 0).unsqueeze(1).unsqueeze(2)
    # Create indices for comparison.
    indices = attention_mask_with_indices.unsqueeze(1).unsqueeze(2)  # [bsz, 1, 1, seq_len]
    indices_t = attention_mask_with_indices.unsqueeze(1).unsqueeze(3)  # [bsz, 1, seq_len, 1]
    # Create a lower triangular mask.
    tril_mask = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool))
    attention_mask_4d = (indices == indices_t) & non_padding_mask & tril_mask
    # Invert the attention mask.
    attention_mask_4d = torch.where(attention_mask_4d, zero_tensor, min_dtype)
    return attention_mask_4d


@dataclass
class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
    r"""Data collator that supports VLMs.

    Features should contain input_ids, attention_mask, labels, and optionally contain images, videos and audios.
    """

    template: Optional["Template"] = None
    processor: Optional["ProcessorMixin"] = None

    def __post_init__(self):
        if self.template is None:
            raise ValueError("Template is required for MultiModalDataCollator.")

    def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
        batch_images, batch_videos, batch_audios = [], [], []
        batch_imglens, batch_vidlens, batch_audlens, batch_input_ids = [], [], [], []
        for feature in features:
            images = feature.pop("images", None) or []
            videos = feature.pop("videos", None) or []
            audios = feature.pop("audios", None) or []
            batch_images.extend(images)
            batch_videos.extend(videos)
            batch_audios.extend(audios)
            batch_imglens.append(len(images))
            batch_vidlens.append(len(videos))
            batch_audlens.append(len(audios))
            batch_input_ids.append(feature["input_ids"])

        fake_input_ids = []
        if (
            self.template.mm_plugin.image_token is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0
        ):  # avoid process hanging in zero3/fsdp case
            fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}]
            fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))]
            fake_messages = self.template.mm_plugin.process_messages(
                fake_messages, fake_images, [], [], self.processor
            )
            _fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
            _fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
                _fake_input_ids, None, fake_images, [], [], self.tokenizer, self.processor
            )
            fake_input_ids.extend(_fake_input_ids)
            batch_images = fake_images
            batch_imglens[0] = 1

        if (
            self.template.mm_plugin.audio_token is not None and sum(batch_audlens) == 0
        ):  # avoid process hanging in zero3/fsdp case
            fake_messages = [{"role": "user", "content": AUDIO_PLACEHOLDER}]
            fake_audios = [np.zeros(1600)]
            fake_messages = self.template.mm_plugin.process_messages(
                fake_messages, [], [], fake_audios, self.processor
            )
            _fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
            _fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
                _fake_input_ids, None, [], [], fake_audios, self.tokenizer, self.processor
            )
            fake_input_ids.extend(_fake_input_ids)
            batch_audios = fake_audios
            batch_audlens[0] = 1

        if len(fake_input_ids) != 0:
            if self.tokenizer.padding_side == "right":
                features[0]["input_ids"] = features[0]["input_ids"] + fake_input_ids
                features[0]["attention_mask"] = features[0]["attention_mask"] + [0] * len(fake_input_ids)
                features[0]["labels"] = features[0]["labels"] + [IGNORE_INDEX] * len(fake_input_ids)
            else:
                features[0]["input_ids"] = fake_input_ids + features[0]["input_ids"]
                features[0]["attention_mask"] = [0] * len(fake_input_ids) + features[0]["attention_mask"]
                features[0]["labels"] = [IGNORE_INDEX] * len(fake_input_ids) + features[0]["labels"]

            batch_input_ids[0] = features[0]["input_ids"]

        mm_inputs = self.template.mm_plugin.get_mm_inputs(
            batch_images,
            batch_videos,
            batch_audios,
            batch_imglens,
            batch_vidlens,
            batch_audlens,
            batch_input_ids,
            self.processor,
        )
        if "token_type_ids" in mm_inputs:
            token_type_ids = mm_inputs.pop("token_type_ids")
            for i, feature in enumerate(features):
                feature["token_type_ids"] = token_type_ids[i]

        features: dict[str, torch.Tensor] = super().__call__(features)

        if self.model is not None and hasattr(self.model, "get_rope_index"):  # for qwen2vl mrope
            rope_index_kwargs = {
                "input_ids": features["input_ids"],
                "image_grid_thw": mm_inputs.get("image_grid_thw"),
                "video_grid_thw": mm_inputs.get("video_grid_thw"),
                "attention_mask": (features["attention_mask"] >= 1).float(),
            }
            if "second_per_grid_ts" in mm_inputs:  # for qwen2vl
                rope_index_kwargs["second_per_grid_ts"] = mm_inputs.get("second_per_grid_ts")
            if "video_second_per_grid" in mm_inputs:  # for qwen2omni
                rope_index_kwargs["second_per_grids"] = mm_inputs.get("video_second_per_grid")

            if getattr(self.model.config, "model_type", None) == "qwen2_5_omni_thinker":  # for qwen2omni
                rope_index_kwargs["use_audio_in_video"] = getattr(self.processor, "use_audio_in_video", False)
                feature_attention_mask = mm_inputs.get("feature_attention_mask", None)
                if feature_attention_mask is not None:
                    audio_feature_lengths = torch.sum(
                        feature_attention_mask, dim=1
                    )  # FIXME need to get video image lengths
                    rope_index_kwargs["audio_seqlens"] = audio_feature_lengths  # prepare for input

                delta0 = (1 - rope_index_kwargs["attention_mask"]).sum(dim=-1).unsqueeze(1)
                # avoid conflict
                new_position_ids, rope_deltas = self.model.get_rope_index(**rope_index_kwargs)
                features["position_ids"], features["rope_deltas"] = (
                    new_position_ids.clone(),
                    rope_deltas - delta0,
                )  # avoid inplace operation FIXME
            else:  # for qwen2vl
                features["position_ids"], features["rope_deltas"] = self.model.get_rope_index(**rope_index_kwargs)

        if "cross_attention_mask" in mm_inputs:  # for mllama inputs when pad_to_multiple_of is enabled
            cross_attention_mask = mm_inputs.pop("cross_attention_mask")
            seq_len = features["input_ids"].size(1)
            orig_len = cross_attention_mask.size(1)
            mm_inputs["cross_attention_mask"] = F.pad(cross_attention_mask, (0, 0, 0, 0, 0, seq_len - orig_len))

        features.update(mm_inputs)

        if "image_bound" in features:  # for minicpmv inputs
            bsz, seq_length = features["input_ids"].shape
            features["position_ids"] = torch.arange(seq_length).long().repeat(bsz, 1)
            return {"data": features, "input_ids": features["input_ids"], "labels": features["labels"]}

        return features


@dataclass
class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq):
    r"""Data collator for 4d attention mask."""

    block_diag_attn: bool = False
    attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager"
    compute_dtype: "torch.dtype" = torch.float32

    def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
        features = super().__call__(features)
        if self.block_diag_attn and self.attn_implementation != "flash_attention_2":
            features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype)

        for key, value in features.items():  # cast data dtype for paligemma
            if torch.is_tensor(value) and torch.is_floating_point(value):
                features[key] = value.to(self.compute_dtype)

        return features


@dataclass
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
    r"""Data collator for pairwise data."""

    def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
        r"""Pad batched data to the longest sequence in the batch.

        We generate 2 * n examples where the first n examples represent chosen examples and
        the last n examples represent rejected examples.
        """
        concatenated_features = []
        for key in ("chosen", "rejected"):
            for feature in features:
                target_feature = {
                    "input_ids": feature[f"{key}_input_ids"],
                    "attention_mask": feature[f"{key}_attention_mask"],
                    "labels": feature[f"{key}_labels"],
                    "images": feature["images"],
                    "videos": feature["videos"],
                    "audios": feature["audios"],
                }
                concatenated_features.append(target_feature)

        return super().__call__(concatenated_features)


@dataclass
class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
    r"""Data collator for KTO data."""

    def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
        target_features = []
        kl_features = []
        kto_tags = []
        for feature in features:
            target_feature = {
                "input_ids": feature["input_ids"],
                "attention_mask": feature["attention_mask"],
                "labels": feature["labels"],
                "images": feature["images"],
                "videos": feature["videos"],
                "audios": feature["audios"],
            }
            kl_feature = {
                "input_ids": feature["kl_input_ids"],
                "attention_mask": feature["kl_attention_mask"],
                "labels": feature["kl_labels"],
                "images": feature["images"],
                "videos": feature["videos"],
                "audios": feature["audios"],
            }
            target_features.append(target_feature)
            kl_features.append(kl_feature)
            kto_tags.append(feature["kto_tags"])

        batch = super().__call__(target_features)
        kl_batch = super().__call__(kl_features)
        batch["kl_input_ids"] = kl_batch["input_ids"]
        batch["kl_attention_mask"] = kl_batch["attention_mask"]
        batch["kl_labels"] = kl_batch["labels"]
        if "cross_attention_mask" in kl_batch:  # for mllama inputs
            batch["kl_cross_attention_mask"] = kl_batch["cross_attention_mask"]

        if "token_type_ids" in kl_batch:
            batch["kl_token_type_ids"] = kl_batch["token_type_ids"]

        batch["kto_tags"] = torch.tensor(kto_tags)
        return batch