Spaces:
Running
Running
File size: 16,725 Bytes
e81015c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import os
from collections.abc import AsyncGenerator
from threading import Thread
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
import torch
from transformers import GenerationConfig, TextIteratorStreamer
from typing_extensions import override
from ..data import get_template_and_fix_tokenizer
from ..extras import logging
from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER, EngineName
from ..model import load_model, load_tokenizer
from .base_engine import BaseEngine, Response
if TYPE_CHECKING:
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
from trl import PreTrainedModelWrapper
from ..data import Template
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
logger = logging.get_logger(__name__)
class HuggingfaceEngine(BaseEngine):
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None:
self.name = EngineName.HF
self.can_generate = finetuning_args.stage == "sft"
tokenizer_module = load_tokenizer(model_args)
self.tokenizer = tokenizer_module["tokenizer"]
self.processor = tokenizer_module["processor"]
self.tokenizer.padding_side = "left" if self.can_generate else "right"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args)
self.model = load_model(
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
) # must after fixing tokenizer to resize vocab
self.generating_args = generating_args.to_dict()
try:
asyncio.get_event_loop()
except RuntimeError:
logger.warning_rank0_once("There is no current event loop, creating a new one.")
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
self.semaphore = asyncio.Semaphore(int(os.getenv("MAX_CONCURRENT", "1")))
@staticmethod
def _process_args(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
template: "Template",
generating_args: dict[str, Any],
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[list["ImageInput"]] = None,
videos: Optional[list["VideoInput"]] = None,
audios: Optional[list["AudioInput"]] = None,
input_kwargs: Optional[dict[str, Any]] = {},
) -> tuple[dict[str, Any], int]:
mm_input_dict = {"images": [], "videos": [], "audios": [], "imglens": [0], "vidlens": [0], "audlens": [0]}
if images is not None:
mm_input_dict.update({"images": images, "imglens": [len(images)]})
if not any(IMAGE_PLACEHOLDER in message["content"] for message in messages):
messages[0]["content"] = IMAGE_PLACEHOLDER * len(images) + messages[0]["content"]
if videos is not None:
mm_input_dict.update({"videos": videos, "vidlens": [len(videos)]})
if not any(VIDEO_PLACEHOLDER in message["content"] for message in messages):
messages[0]["content"] = VIDEO_PLACEHOLDER * len(videos) + messages[0]["content"]
if audios is not None:
mm_input_dict.update({"audios": audios, "audlens": [len(audios)]})
if not any(AUDIO_PLACEHOLDER in message["content"] for message in messages):
messages[0]["content"] = AUDIO_PLACEHOLDER * len(audios) + messages[0]["content"]
messages = template.mm_plugin.process_messages(
messages, mm_input_dict["images"], mm_input_dict["videos"], mm_input_dict["audios"], processor
)
paired_messages = messages + [{"role": "assistant", "content": ""}]
system = system or generating_args["default_system"]
enable_thinking = input_kwargs.pop("enable_thinking", None)
enable_thinking = enable_thinking if enable_thinking is not None else generating_args["enable_thinking"]
prompt_ids, _ = template.encode_oneturn(tokenizer, paired_messages, system, tools, enable_thinking)
prompt_ids, _ = template.mm_plugin.process_token_ids(
prompt_ids,
None,
mm_input_dict["images"],
mm_input_dict["videos"],
mm_input_dict["audios"],
tokenizer,
processor,
)
prompt_length = len(prompt_ids)
inputs = torch.tensor([prompt_ids], device=model.device)
attention_mask = torch.ones_like(inputs, dtype=torch.long)
do_sample: Optional[bool] = input_kwargs.pop("do_sample", None)
temperature: Optional[float] = input_kwargs.pop("temperature", None)
top_p: Optional[float] = input_kwargs.pop("top_p", None)
top_k: Optional[float] = input_kwargs.pop("top_k", None)
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
skip_special_tokens: Optional[bool] = input_kwargs.pop("skip_special_tokens", None)
max_length: Optional[int] = input_kwargs.pop("max_length", None)
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
stop: Optional[Union[str, list[str]]] = input_kwargs.pop("stop", None)
if stop is not None:
logger.warning_rank0("Stop parameter is not supported by the huggingface engine yet.")
generating_args = generating_args.copy()
generating_args.update(
dict(
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
temperature=temperature if temperature is not None else generating_args["temperature"],
top_p=top_p if top_p is not None else generating_args["top_p"],
top_k=top_k if top_k is not None else generating_args["top_k"],
num_return_sequences=num_return_sequences,
repetition_penalty=repetition_penalty
if repetition_penalty is not None
else generating_args["repetition_penalty"],
length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"],
skip_special_tokens=skip_special_tokens
if skip_special_tokens is not None
else generating_args["skip_special_tokens"],
eos_token_id=template.get_stop_token_ids(tokenizer),
pad_token_id=tokenizer.pad_token_id,
)
)
if isinstance(num_return_sequences, int) and num_return_sequences > 1: # do_sample needs temperature > 0
generating_args["do_sample"] = True
generating_args["temperature"] = generating_args["temperature"] or 1.0
if not generating_args["temperature"]:
generating_args["do_sample"] = False
if not generating_args["do_sample"]:
generating_args.pop("temperature", None)
generating_args.pop("top_p", None)
if max_length:
generating_args.pop("max_new_tokens", None)
generating_args["max_length"] = max_length
if max_new_tokens:
generating_args.pop("max_length", None)
generating_args["max_new_tokens"] = max_new_tokens
gen_kwargs = dict(
inputs=inputs,
attention_mask=attention_mask,
generation_config=GenerationConfig(**generating_args),
)
mm_inputs = template.mm_plugin.get_mm_inputs(**mm_input_dict, batch_ids=[prompt_ids], processor=processor)
for key, value in mm_inputs.items():
if isinstance(value, list) and isinstance(value[0], torch.Tensor): # for pixtral inputs
value = torch.stack(value) # assume they have same sizes
elif (
isinstance(value, list) and isinstance(value[0], list) and isinstance(value[0][0], torch.Tensor)
): # for minicpmv inputs
value = torch.stack([torch.stack(v) for v in value])
elif not isinstance(value, torch.Tensor):
value = torch.tensor(value)
if torch.is_floating_point(value): # cast data dtype for paligemma
value = value.to(model.dtype)
if key == "second_per_grid_ts": # qwen2.5vl special case
gen_kwargs[key] = value.tolist()
else:
gen_kwargs[key] = value.to(model.device)
if getattr(model.config, "model_type", None) in ["minicpmv", "minicpmo"]:
gen_kwargs["input_ids"] = inputs
gen_kwargs["tokenizer"] = tokenizer
if "audio_feature_lens" in mm_inputs:
gen_kwargs["audio_feature_lens"] = mm_inputs["audio_feature_lens"]
gen_kwargs.pop("image_sizes", None)
return gen_kwargs, prompt_length
@staticmethod
@torch.inference_mode()
def _chat(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
template: "Template",
generating_args: dict[str, Any],
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[list["ImageInput"]] = None,
videos: Optional[list["VideoInput"]] = None,
audios: Optional[list["AudioInput"]] = None,
input_kwargs: Optional[dict[str, Any]] = {},
) -> list["Response"]:
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
model,
tokenizer,
processor,
template,
generating_args,
messages,
system,
tools,
images,
videos,
audios,
input_kwargs,
)
generate_output = model.generate(**gen_kwargs)
if isinstance(generate_output, tuple):
generate_output = generate_output[1][0] # post-process the minicpm_o output
response_ids = generate_output[:, prompt_length:]
response = tokenizer.batch_decode(
response_ids,
skip_special_tokens=getattr(gen_kwargs["generation_config"], "skip_special_tokens", True),
clean_up_tokenization_spaces=True,
)
results = []
for i in range(len(response)):
eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero()
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
results.append(
Response(
response_text=response[i],
response_length=response_length,
prompt_length=prompt_length,
finish_reason="stop" if len(eos_index) else "length",
)
)
return results
@staticmethod
@torch.inference_mode()
def _stream_chat(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
template: "Template",
generating_args: dict[str, Any],
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[list["ImageInput"]] = None,
videos: Optional[list["VideoInput"]] = None,
audios: Optional[list["AudioInput"]] = None,
input_kwargs: Optional[dict[str, Any]] = {},
) -> Callable[[], str]:
gen_kwargs, _ = HuggingfaceEngine._process_args(
model,
tokenizer,
processor,
template,
generating_args,
messages,
system,
tools,
images,
videos,
audios,
input_kwargs,
)
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=True,
skip_special_tokens=getattr(gen_kwargs["generation_config"], "skip_special_tokens", True),
)
gen_kwargs["streamer"] = streamer
thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
thread.start()
def stream():
try:
return streamer.__next__()
except StopIteration:
raise StopAsyncIteration()
return stream
@staticmethod
@torch.inference_mode()
def _get_scores(
model: "PreTrainedModelWrapper",
tokenizer: "PreTrainedTokenizer",
batch_input: list[str],
input_kwargs: Optional[dict[str, Any]] = {},
) -> list[float]:
max_length: Optional[int] = input_kwargs.pop("max_length", None)
device = getattr(model.pretrained_model, "device", "cuda")
inputs: dict[str, torch.Tensor] = tokenizer(
batch_input,
padding=True,
truncation=True,
max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
return_tensors="pt",
add_special_tokens=False,
).to(device)
values: torch.Tensor = model(**inputs, return_dict=True, use_cache=False)[-1]
scores = values.gather(dim=-1, index=(inputs["attention_mask"].sum(dim=-1, keepdim=True) - 1))
return scores
@override
async def chat(
self,
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[list["ImageInput"]] = None,
videos: Optional[list["VideoInput"]] = None,
audios: Optional[list["AudioInput"]] = None,
**input_kwargs,
) -> list["Response"]:
if not self.can_generate:
raise ValueError("The current model does not support `chat`.")
input_args = (
self.model,
self.tokenizer,
self.processor,
self.template,
self.generating_args,
messages,
system,
tools,
images,
videos,
audios,
input_kwargs,
)
async with self.semaphore:
return await asyncio.to_thread(self._chat, *input_args)
@override
async def stream_chat(
self,
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[list["ImageInput"]] = None,
videos: Optional[list["VideoInput"]] = None,
audios: Optional[list["AudioInput"]] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
if not self.can_generate:
raise ValueError("The current model does not support `stream_chat`.")
input_args = (
self.model,
self.tokenizer,
self.processor,
self.template,
self.generating_args,
messages,
system,
tools,
images,
videos,
audios,
input_kwargs,
)
async with self.semaphore:
stream = self._stream_chat(*input_args)
while True:
try:
yield await asyncio.to_thread(stream)
except StopAsyncIteration:
break
@override
async def get_scores(
self,
batch_input: list[str],
**input_kwargs,
) -> list[float]:
if self.can_generate:
raise ValueError("Cannot get scores using an auto-regressive model.")
input_args = (self.model, self.tokenizer, batch_input, input_kwargs)
async with self.semaphore:
return await asyncio.to_thread(self._get_scores, *input_args)
|