File size: 11,343 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import base64
import io
import json
import os
import re
import uuid
from collections.abc import AsyncGenerator
from typing import TYPE_CHECKING, Optional

from ..data import Role as DataRole
from ..extras import logging
from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.misc import is_env_enabled
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available
from .common import dictify, jsonify
from .protocol import (
    ChatCompletionMessage,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseUsage,
    ChatCompletionStreamResponse,
    ChatCompletionStreamResponseChoice,
    Finish,
    Function,
    FunctionCall,
    Role,
    ScoreEvaluationResponse,
)


if is_fastapi_available():
    from fastapi import HTTPException, status


if is_pillow_available():
    from PIL import Image


if is_requests_available():
    import requests


if TYPE_CHECKING:
    from ..chat import ChatModel
    from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
    from .protocol import ChatCompletionRequest, ScoreEvaluationRequest


logger = logging.get_logger(__name__)
ROLE_MAPPING = {
    Role.USER: DataRole.USER.value,
    Role.ASSISTANT: DataRole.ASSISTANT.value,
    Role.SYSTEM: DataRole.SYSTEM.value,
    Role.FUNCTION: DataRole.FUNCTION.value,
    Role.TOOL: DataRole.OBSERVATION.value,
}


def _process_request(
    request: "ChatCompletionRequest",
) -> tuple[
    list[dict[str, str]],
    Optional[str],
    Optional[str],
    Optional[list["ImageInput"]],
    Optional[list["VideoInput"]],
    Optional[list["AudioInput"]],
]:
    if is_env_enabled("API_VERBOSE", "1"):
        logger.info_rank0(f"==== request ====\n{json.dumps(dictify(request), indent=2, ensure_ascii=False)}")

    if len(request.messages) == 0:
        raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")

    if request.messages[0].role == Role.SYSTEM:
        content = request.messages.pop(0).content
        system = content[0].text if isinstance(content, list) else content
    else:
        system = None

    if len(request.messages) % 2 == 0:
        raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")

    input_messages = []
    images, videos, audios = [], [], []
    for i, message in enumerate(request.messages):
        if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
            raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
        elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
            raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")

        if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls):
            tool_calls = [
                {"name": tool_call.function.name, "arguments": tool_call.function.arguments}
                for tool_call in message.tool_calls
            ]
            content = json.dumps(tool_calls, ensure_ascii=False)
            input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content})
        elif isinstance(message.content, list):
            text_content = ""
            for input_item in message.content:
                if input_item.type == "text":
                    text_content += input_item.text
                elif input_item.type == "image_url":
                    text_content += IMAGE_PLACEHOLDER
                    image_url = input_item.image_url.url
                    if re.match(r"^data:image\/(png|jpg|jpeg|gif|bmp);base64,(.+)$", image_url):  # base64 image
                        image_stream = io.BytesIO(base64.b64decode(image_url.split(",", maxsplit=1)[1]))
                    elif os.path.isfile(image_url):  # local file
                        image_stream = open(image_url, "rb")
                    else:  # web uri
                        image_stream = requests.get(image_url, stream=True).raw

                    images.append(Image.open(image_stream).convert("RGB"))
                elif input_item.type == "video_url":
                    text_content += VIDEO_PLACEHOLDER
                    video_url = input_item.video_url.url
                    if re.match(r"^data:video\/(mp4|mkv|avi|mov);base64,(.+)$", video_url):  # base64 video
                        video_stream = io.BytesIO(base64.b64decode(video_url.split(",", maxsplit=1)[1]))
                    elif os.path.isfile(video_url):  # local file
                        video_stream = open(video_url, "rb")
                    else:  # web uri
                        video_stream = requests.get(video_url, stream=True).raw

                    videos.append(video_stream)
                elif input_item.type == "audio_url":
                    text_content += AUDIO_PLACEHOLDER
                    audio_url = input_item.audio_url.url
                    if re.match(r"^data:audio\/(mpeg|mp3|wav|ogg);base64,(.+)$", audio_url):  # base64 audio
                        audio_stream = io.BytesIO(base64.b64decode(audio_url.split(",", maxsplit=1)[1]))
                    elif os.path.isfile(audio_url):  # local file
                        audio_stream = open(audio_url, "rb")
                    else:  # web uri
                        audio_stream = requests.get(audio_url, stream=True).raw

                    audios.append(audio_stream)
                else:
                    raise HTTPException(
                        status_code=status.HTTP_400_BAD_REQUEST, detail=f"Invalid input type {input_item.type}."
                    )

            input_messages.append({"role": ROLE_MAPPING[message.role], "content": text_content})
        else:
            input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content})

    tool_list = request.tools
    if isinstance(tool_list, list) and len(tool_list):
        try:
            tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False)
        except json.JSONDecodeError:
            raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
    else:
        tools = None

    return input_messages, system, tools, images or None, videos or None, audios or None


def _create_stream_chat_completion_chunk(
    completion_id: str,
    model: str,
    delta: "ChatCompletionMessage",
    index: Optional[int] = 0,
    finish_reason: Optional["Finish"] = None,
) -> str:
    choice_data = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason)
    chunk = ChatCompletionStreamResponse(id=completion_id, model=model, choices=[choice_data])
    return jsonify(chunk)


async def create_chat_completion_response(
    request: "ChatCompletionRequest", chat_model: "ChatModel"
) -> "ChatCompletionResponse":
    completion_id = f"chatcmpl-{uuid.uuid4().hex}"
    input_messages, system, tools, images, videos, audios = _process_request(request)
    responses = await chat_model.achat(
        input_messages,
        system,
        tools,
        images,
        videos,
        audios,
        do_sample=request.do_sample,
        temperature=request.temperature,
        top_p=request.top_p,
        max_new_tokens=request.max_tokens,
        num_return_sequences=request.n,
        stop=request.stop,
    )

    prompt_length, response_length = 0, 0
    choices = []
    for i, response in enumerate(responses):
        if tools:
            result = chat_model.engine.template.extract_tool(response.response_text)
        else:
            result = response.response_text

        if isinstance(result, list):
            tool_calls = []
            for tool in result:
                function = Function(name=tool.name, arguments=tool.arguments)
                tool_calls.append(FunctionCall(id=f"call_{uuid.uuid4().hex}", function=function))

            response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=tool_calls)
            finish_reason = Finish.TOOL
        else:
            response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
            finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH

        choices.append(ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason))
        prompt_length = response.prompt_length
        response_length += response.response_length

    usage = ChatCompletionResponseUsage(
        prompt_tokens=prompt_length,
        completion_tokens=response_length,
        total_tokens=prompt_length + response_length,
    )

    return ChatCompletionResponse(id=completion_id, model=request.model, choices=choices, usage=usage)


async def create_stream_chat_completion_response(
    request: "ChatCompletionRequest", chat_model: "ChatModel"
) -> AsyncGenerator[str, None]:
    completion_id = f"chatcmpl-{uuid.uuid4().hex}"
    input_messages, system, tools, images, videos, audios = _process_request(request)
    if tools:
        raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")

    if request.n > 1:
        raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream multiple responses.")

    yield _create_stream_chat_completion_chunk(
        completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(role=Role.ASSISTANT, content="")
    )
    async for new_token in chat_model.astream_chat(
        input_messages,
        system,
        tools,
        images,
        videos,
        audios,
        do_sample=request.do_sample,
        temperature=request.temperature,
        top_p=request.top_p,
        max_new_tokens=request.max_tokens,
        stop=request.stop,
    ):
        if len(new_token) != 0:
            yield _create_stream_chat_completion_chunk(
                completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(content=new_token)
            )

    yield _create_stream_chat_completion_chunk(
        completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
    )
    yield "[DONE]"


async def create_score_evaluation_response(
    request: "ScoreEvaluationRequest", chat_model: "ChatModel"
) -> "ScoreEvaluationResponse":
    score_id = f"scoreval-{uuid.uuid4().hex}"
    if len(request.messages) == 0:
        raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")

    scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
    return ScoreEvaluationResponse(id=score_id, model=request.model, scores=scores)