ferdmartin commited on
Commit
acd1b85
·
verified ·
1 Parent(s): 997f16f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -10
app.py CHANGED
@@ -8,7 +8,7 @@ import zipfile
8
  # Cache the model loading
9
  @st.cache_resource
10
  def load_model():
11
- # The shareable link to your Google Drive file
12
  url = "https://drive.google.com/uc?id=1m9YVs0cBRT3-j98rn7d_0DT7jwB_EXPu"
13
  output = 'model.zip'
14
  gdown.download(url, output, quiet=False)
@@ -19,7 +19,7 @@ def load_model():
19
  model = tf.keras.models.load_model('best_model')
20
  return model
21
 
22
- # Cache the JSON data loading
23
  @st.cache_data
24
  def load_json(filename):
25
  with open(filename, 'r') as f:
@@ -58,23 +58,20 @@ def predict_rating(reviewerID, itemID, model):
58
  prediction = model.predict(prediction_inputs)
59
  return prediction.item()
60
 
61
- # Load the model
62
  model = load_model()
63
 
64
- # Streamlit app interface
65
  st.title('Music Rating Prediction - Amazon Review')
66
 
67
  # Example input values
68
  example_reviewerID = "61658" # Example reviewerID
69
  example_itemID = "5000" # Example itemID
70
 
71
- # User inputs with examples
72
- # reviewerID = st.text_input('Reviewer ID', value=example_reviewerID)
73
- # itemID = st.text_input('Item ID', value=example_itemID)
74
- reviewerID = st.text_input('Reviewer ID')
75
- itemID = st.text_input('Item ID')
76
 
77
- # Predict button
78
  if st.button('Predict Rating'):
79
  prediction = predict_rating(reviewerID, itemID, model)
80
  st.write(f'Predicted Rating: {prediction:.2f} ⭐')
 
8
  # Cache the model loading
9
  @st.cache_resource
10
  def load_model():
11
+ # Saved model link
12
  url = "https://drive.google.com/uc?id=1m9YVs0cBRT3-j98rn7d_0DT7jwB_EXPu"
13
  output = 'model.zip'
14
  gdown.download(url, output, quiet=False)
 
19
  model = tf.keras.models.load_model('best_model')
20
  return model
21
 
22
+ # Cache the JSON
23
  @st.cache_data
24
  def load_json(filename):
25
  with open(filename, 'r') as f:
 
58
  prediction = model.predict(prediction_inputs)
59
  return prediction.item()
60
 
 
61
  model = load_model()
62
 
63
+ # App interface
64
  st.title('Music Rating Prediction - Amazon Review')
65
 
66
  # Example input values
67
  example_reviewerID = "61658" # Example reviewerID
68
  example_itemID = "5000" # Example itemID
69
 
70
+ # Inputs
71
+ reviewerID = st.text_input('Reviewer ID', value=example_reviewerID)
72
+ itemID = st.text_input('Item ID', value=example_itemID)
 
 
73
 
74
+ # Button
75
  if st.button('Predict Rating'):
76
  prediction = predict_rating(reviewerID, itemID, model)
77
  st.write(f'Predicted Rating: {prediction:.2f} ⭐')