Upload 4 files
Browse files- README.md +31 -5
- app.py +128 -2
- requirements.txt +4 -1
README.md
CHANGED
@@ -17,21 +17,47 @@ This application converts PDF documents to Markdown format. It uses the `docling
|
|
17 |
|
18 |
- Upload PDF files directly
|
19 |
- Convert PDFs from URLs
|
20 |
-
-
|
|
|
21 |
- Clean, user-friendly interface
|
22 |
|
23 |
## How to Use
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## Technical Details
|
30 |
|
31 |
Built with:
|
32 |
- Streamlit 1.29.0
|
33 |
- Docling 2.7.0
|
|
|
|
|
|
|
34 |
|
35 |
## Deployment
|
36 |
|
37 |
-
This application is deployed on Hugging Face Spaces.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
- Upload PDF files directly
|
19 |
- Convert PDFs from URLs
|
20 |
+
- Batch process multiple images using vLLM
|
21 |
+
- Download the resulting Markdown files
|
22 |
- Clean, user-friendly interface
|
23 |
|
24 |
## How to Use
|
25 |
|
26 |
+
### PDF to Markdown
|
27 |
+
1. Select the "PDF to Markdown" tab
|
28 |
+
2. Upload a PDF file using the file uploader or enter a URL to a PDF document
|
29 |
+
3. Click the "Convert to Markdown" button
|
30 |
+
4. Once conversion is complete, download the Markdown file
|
31 |
+
|
32 |
+
### Batch Image Processing
|
33 |
+
1. Select the "Batch Image Processing" tab
|
34 |
+
2. Upload multiple image files (PNG, JPG, JPEG)
|
35 |
+
3. Optionally customize the model path and prompt text
|
36 |
+
4. Click the "Process Images" button
|
37 |
+
5. Once processing is complete, download the ZIP file containing all results
|
38 |
|
39 |
## Technical Details
|
40 |
|
41 |
Built with:
|
42 |
- Streamlit 1.29.0
|
43 |
- Docling 2.7.0
|
44 |
+
- docling_core
|
45 |
+
- vLLM (for batch processing)
|
46 |
+
- Python 3.12
|
47 |
|
48 |
## Deployment
|
49 |
|
50 |
+
This application is deployed on Hugging Face Spaces.
|
51 |
+
|
52 |
+
To deploy this application:
|
53 |
+
1. Create a new Space on Hugging Face (https://huggingface.co/spaces)
|
54 |
+
2. Choose "Streamlit" as the SDK
|
55 |
+
3. Upload all these files to the Space repository:
|
56 |
+
- app.py
|
57 |
+
- requirements.txt
|
58 |
+
- README.md
|
59 |
+
- runtime.txt
|
60 |
+
|
61 |
+
The application will automatically create any necessary directories when it starts.
|
62 |
+
|
63 |
+
Note: The vLLM functionality requires significant computational resources, so you may need to select a more powerful hardware configuration for your Space.
|
app.py
CHANGED
@@ -3,6 +3,24 @@ from docling.document_converter import DocumentConverter
|
|
3 |
import tempfile
|
4 |
import os
|
5 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Configure logging
|
8 |
logging.basicConfig(level=logging.DEBUG)
|
@@ -43,7 +61,11 @@ st.markdown("""
|
|
43 |
</style>
|
44 |
""", unsafe_allow_html=True)
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Initialize session state if it doesn't exist
|
49 |
if 'converter' not in st.session_state:
|
@@ -128,4 +150,108 @@ if convert_clicked:
|
|
128 |
logger.error(f"Error converting from URL: {str(e)}")
|
129 |
st.error(f"Error converting from URL: {str(e)}")
|
130 |
else:
|
131 |
-
st.warning("Please upload a file or enter a URL first")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import tempfile
|
4 |
import os
|
5 |
import logging
|
6 |
+
import time
|
7 |
+
from PIL import Image
|
8 |
+
import zipfile
|
9 |
+
import io
|
10 |
+
|
11 |
+
# vLLM and docling_core imports for batch processing
|
12 |
+
try:
|
13 |
+
from vllm import LLM, SamplingParams
|
14 |
+
from docling_core.types.doc import DoclingDocument
|
15 |
+
from docling_core.types.doc.document import DocTagsDocument
|
16 |
+
from pathlib import Path
|
17 |
+
VLLM_AVAILABLE = True
|
18 |
+
except ImportError:
|
19 |
+
VLLM_AVAILABLE = False
|
20 |
+
|
21 |
+
# Create necessary directories
|
22 |
+
os.makedirs("img", exist_ok=True)
|
23 |
+
os.makedirs("out", exist_ok=True)
|
24 |
|
25 |
# Configure logging
|
26 |
logging.basicConfig(level=logging.DEBUG)
|
|
|
61 |
</style>
|
62 |
""", unsafe_allow_html=True)
|
63 |
|
64 |
+
# Create tabs for different functionalities
|
65 |
+
tab1, tab2 = st.tabs(["PDF to Markdown", "Batch Image Processing"])
|
66 |
+
|
67 |
+
with tab1:
|
68 |
+
st.title("PDF to Markdown Converter")
|
69 |
|
70 |
# Initialize session state if it doesn't exist
|
71 |
if 'converter' not in st.session_state:
|
|
|
150 |
logger.error(f"Error converting from URL: {str(e)}")
|
151 |
st.error(f"Error converting from URL: {str(e)}")
|
152 |
else:
|
153 |
+
st.warning("Please upload a file or enter a URL first")
|
154 |
+
|
155 |
+
# Batch processing tab
|
156 |
+
with tab2:
|
157 |
+
st.title("Batch Image Processing with vLLM")
|
158 |
+
|
159 |
+
if not VLLM_AVAILABLE:
|
160 |
+
st.warning("vLLM and docling_core are required for batch processing. Please install them with: pip install vllm docling_core")
|
161 |
+
else:
|
162 |
+
st.write("This feature uses vLLM to process multiple images and convert them to Markdown.")
|
163 |
+
|
164 |
+
# Ensure directories exist
|
165 |
+
img_dir = "img"
|
166 |
+
out_dir = "out"
|
167 |
+
os.makedirs(img_dir, exist_ok=True)
|
168 |
+
os.makedirs(out_dir, exist_ok=True)
|
169 |
+
|
170 |
+
st.info(f"Images will be processed from the '{img_dir}' directory and results will be saved to the '{out_dir}' directory.")
|
171 |
+
|
172 |
+
# Model configuration
|
173 |
+
MODEL_PATH = st.text_input("Model Path", value="ds4sd/SmolDocling-256M-preview")
|
174 |
+
PROMPT_TEXT = st.text_area("Prompt Text", value="Convert page to Docling.")
|
175 |
+
|
176 |
+
# File uploader for multiple images
|
177 |
+
uploaded_images = st.file_uploader(
|
178 |
+
"Upload image files",
|
179 |
+
type=['png', 'jpg', 'jpeg'],
|
180 |
+
accept_multiple_files=True,
|
181 |
+
key='image_uploader',
|
182 |
+
help="Drag and drop or click to select image files"
|
183 |
+
)
|
184 |
+
|
185 |
+
# Process button
|
186 |
+
process_clicked = st.button("Process Images", type="primary", key="process_button")
|
187 |
+
|
188 |
+
if process_clicked and uploaded_images:
|
189 |
+
try:
|
190 |
+
with st.spinner('Processing images...'):
|
191 |
+
# Initialize LLM
|
192 |
+
llm = LLM(model=MODEL_PATH, limit_mm_per_prompt={"image": 1})
|
193 |
+
|
194 |
+
sampling_params = SamplingParams(
|
195 |
+
temperature=0.0,
|
196 |
+
max_tokens=8192
|
197 |
+
)
|
198 |
+
|
199 |
+
chat_template = f"<|im_start|>User:<image>{PROMPT_TEXT}<end_of_utterance>\nAssistant:"
|
200 |
+
|
201 |
+
start_time = time.time()
|
202 |
+
|
203 |
+
# Create a ZIP file in memory to store all outputs
|
204 |
+
zip_buffer = io.BytesIO()
|
205 |
+
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
|
206 |
+
|
207 |
+
progress_bar = st.progress(0)
|
208 |
+
status_text = st.empty()
|
209 |
+
|
210 |
+
for idx, img_file in enumerate(uploaded_images):
|
211 |
+
img_name = img_file.name
|
212 |
+
status_text.text(f"Processing {img_name} ({idx+1}/{len(uploaded_images)})")
|
213 |
+
|
214 |
+
# Open image
|
215 |
+
image = Image.open(img_file).convert("RGB")
|
216 |
+
|
217 |
+
# Process with vLLM
|
218 |
+
llm_input = {"prompt": chat_template, "multi_modal_data": {"image": image}}
|
219 |
+
output = llm.generate([llm_input], sampling_params=sampling_params)[0]
|
220 |
+
|
221 |
+
doctags = output.outputs[0].text
|
222 |
+
img_fn = os.path.splitext(img_name)[0]
|
223 |
+
|
224 |
+
# Add doctags to zip
|
225 |
+
zip_file.writestr(f"{img_fn}.dt", doctags)
|
226 |
+
|
227 |
+
# Convert to Docling Document
|
228 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
229 |
+
doc = DoclingDocument(name=img_fn)
|
230 |
+
doc.load_from_doctags(doctags_doc)
|
231 |
+
|
232 |
+
# Export as markdown and add to zip
|
233 |
+
md_content = doc.export_to_markdown()
|
234 |
+
zip_file.writestr(f"{img_fn}.md", md_content)
|
235 |
+
|
236 |
+
# Update progress
|
237 |
+
progress_bar.progress((idx + 1) / len(uploaded_images))
|
238 |
+
|
239 |
+
total_time = time.time() - start_time
|
240 |
+
|
241 |
+
# Offer the ZIP file for download
|
242 |
+
st.success(f"Processing completed in {total_time:.2f} seconds!")
|
243 |
+
|
244 |
+
zip_buffer.seek(0)
|
245 |
+
st.download_button(
|
246 |
+
label="Download All Results",
|
247 |
+
data=zip_buffer,
|
248 |
+
file_name="processed_images.zip",
|
249 |
+
mime="application/zip"
|
250 |
+
)
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
logger.error(f"Error in batch processing: {str(e)}")
|
254 |
+
st.error(f"Error in batch processing: {str(e)}")
|
255 |
+
|
256 |
+
elif process_clicked:
|
257 |
+
st.warning("Please upload at least one image file")
|
requirements.txt
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
streamlit==1.29.0
|
2 |
docling==2.7.0
|
3 |
-
|
|
|
|
|
|
|
|
1 |
streamlit==1.29.0
|
2 |
docling==2.7.0
|
3 |
+
docling_core
|
4 |
+
vllm
|
5 |
+
watchdog==2.3.1
|
6 |
+
pillow
|