Spaces:
Sleeping
Sleeping
import os | |
from PIL import Image | |
import json | |
from torch.utils.data import Dataset | |
import numpy as np | |
import torch | |
class BaseDataset(Dataset): | |
def __init__(self, args, tokenizer, split, processor): | |
self.image_dir = args.image_dir | |
self.ann_path = args.json_path | |
self.max_seq_length = args.max_seq_length | |
self.split = split | |
self.tokenizer = tokenizer | |
self.ann = json.loads(open(self.ann_path, 'r').read()) | |
self.examples = self.ann[self.split] | |
self.processor = processor | |
def preprocess_text(self, text): | |
ids = self.tokenizer(text)[:self.max_seq_length] | |
mask = [1] * len(ids) | |
text_inputs = self.processor(text=text, return_tensors="pt",truncation=True, padding=False, max_length=self.max_seq_length) | |
processor_ids = text_inputs['input_ids'].squeeze(0).tolist() | |
processor_mask = text_inputs['attention_mask'].squeeze(0).tolist() | |
return ids, mask, processor_ids, processor_mask | |
def __len__(self): | |
return len(self.examples) | |
class IuxrayMultiImageDataset(BaseDataset): | |
def __getitem__(self, idx): | |
example = self.examples[idx] | |
report = example['report'] | |
report_ids, report_masks, processor_ids, processor_mask = self.preprocess_text(report) | |
image_id = example['id'] | |
image_path = example['image_path'] | |
image_1 = Image.open(os.path.join(self.image_dir, image_path[0])).convert('RGB') | |
image_2 = Image.open(os.path.join(self.image_dir, image_path[1])).convert('RGB') | |
# MedCLIP processing | |
image_inputs_1 = self.processor(images=image_1, return_tensors="pt") | |
image_inputs_2 = self.processor(images=image_2, return_tensors="pt") | |
image = torch.stack((image_inputs_1.pixel_values[0], image_inputs_2.pixel_values[0]), 0) | |
seq_length = len(report_ids) | |
processor_length = len(processor_ids) | |
sample = (image_id, image, report_ids, report_masks, processor_ids, processor_mask, seq_length, processor_length) | |
return sample | |
class MimiccxrSingleImageDataset(BaseDataset): | |
def __getitem__(self, idx): | |
example = self.examples[idx] | |
report = example['report'] | |
report_ids, report_masks, processor_ids, processor_mask = self.preprocess_text(report) | |
image_id = example['id'] | |
image_path = example['image_path'] | |
image = Image.open(os.path.join(self.image_dir, image_path[0])).convert('RGB') | |
image_inputs = self.processor(images=image, return_tensors="pt") | |
image = image_inputs.pixel_values[0] | |
seq_length = len(report_ids) | |
processor_length = len(processor_ids) | |
sample = (image_id, image, report_ids, report_masks, processor_ids, processor_mask, seq_length, processor_length) | |
return sample | |