Spaces:
Sleeping
Sleeping
File size: 11,533 Bytes
6e32a75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
from abc import abstractmethod
import json
import time
import torch
import pandas as pd
from numpy import inf
class BaseTrainer(object):
def __init__(self, model, criterion, metric_ftns, optimizer, args):
self.args = args
# setup GPU device if available, move model into configured device
self.device, device_ids = self._prepare_device(args.n_gpu)
self.model = model.to(self.device)
if len(device_ids) > 1:
self.model = torch.nn.DataParallel(model, device_ids=device_ids)
self.criterion = criterion
self.metric_ftns = metric_ftns
self.optimizer = optimizer
self.epochs = self.args.epochs
self.save_period = self.args.save_period
self.mnt_mode = args.monitor_mode
self.mnt_metric = 'val_' + args.monitor_metric
self.mnt_metric_test = 'test_' + args.monitor_metric
assert self.mnt_mode in ['min', 'max']
self.mnt_best = inf if self.mnt_mode == 'min' else -inf
self.early_stop = getattr(self.args, 'early_stop', inf)
self.start_epoch = 1
self.checkpoint_dir = args.save_dir
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
if args.resume is not None:
self._resume_checkpoint(args.resume)
self.best_recorder = {'val': {self.mnt_metric: self.mnt_best},
'test': {self.mnt_metric_test: self.mnt_best}}
@abstractmethod
def _train_epoch(self, epoch):
raise NotImplementedError
def train(self):
not_improved_count = 0
for epoch in range(self.start_epoch, self.epochs + 1):
result = self._train_epoch(epoch)
# save logged informations into log dict
log = {'epoch': epoch}
log.update(result)
self._record_best(log)
# print logged informations to the screen
for key, value in log.items():
print('\t{:15s}: {}'.format(str(key), value))
# evaluate model performance according to configured metric, save best checkpoint as model_best
best = False
if self.mnt_mode != 'off':
try:
# check whether model performance improved or not, according to specified metric(mnt_metric)
improved = (self.mnt_mode == 'min' and log[self.mnt_metric] <= self.mnt_best) or \
(self.mnt_mode == 'max' and log[self.mnt_metric] >= self.mnt_best)
except KeyError:
print("Warning: Metric '{}' is not found. " "Model performance monitoring is disabled.".format(
self.mnt_metric))
self.mnt_mode = 'off'
improved = False
if improved:
self.mnt_best = log[self.mnt_metric]
not_improved_count = 0
best = True
else:
not_improved_count += 1
if not_improved_count > self.early_stop:
print("Validation performance didn\'t improve for {} epochs. " "Training stops.".format(
self.early_stop))
break
if epoch % self.save_period == 0:
self._save_checkpoint(epoch, save_best=best)
self._print_best()
self._print_best_to_file()
def _print_best_to_file(self):
crt_time = time.asctime(time.localtime(time.time()))
self.best_recorder['val']['time'] = crt_time
self.best_recorder['test']['time'] = crt_time
self.best_recorder['val']['seed'] = self.args.seed
self.best_recorder['test']['seed'] = self.args.seed
self.best_recorder['val']['best_model_from'] = 'val'
self.best_recorder['test']['best_model_from'] = 'test'
if not os.path.exists(self.args.record_dir):
os.makedirs(self.args.record_dir)
record_path = os.path.join(self.args.record_dir, self.args.dataset_name+'.csv')
if not os.path.exists(record_path):
record_table = pd.DataFrame()
else:
record_table = pd.read_csv(record_path)
record_table = record_table.append(self.best_recorder['val'], ignore_index=True)
record_table = record_table.append(self.best_recorder['test'], ignore_index=True)
record_table.to_csv(record_path, index=False)
def _prepare_device(self, n_gpu_use):
n_gpu = torch.cuda.device_count()
if n_gpu_use > 0 and n_gpu == 0:
print("Warning: There\'s no GPU available on this machine," "training will be performed on CPU.")
n_gpu_use = 0
if n_gpu_use > n_gpu:
print(
"Warning: The number of GPU\'s configured to use is {}, but only {} are available " "on this machine.".format(
n_gpu_use, n_gpu))
n_gpu_use = n_gpu
device = torch.device('cuda:0' if n_gpu_use > 0 else 'cpu')
list_ids = list(range(n_gpu_use))
return device, list_ids
def _save_checkpoint(self, epoch, save_best=False):
state = {
'epoch': epoch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'monitor_best': self.mnt_best
}
filename = os.path.join(self.checkpoint_dir, 'current_checkpoint.pth')
torch.save(state, filename)
print("Saving checkpoint: {} ...".format(filename))
if save_best:
best_path = os.path.join(self.checkpoint_dir, 'model_best.pth')
torch.save(state, best_path)
print("Saving current best: model_best.pth ...")
def _resume_checkpoint(self, resume_path):
resume_path = str(resume_path)
print("Loading checkpoint: {} ...".format(resume_path))
checkpoint = torch.load(resume_path)
self.start_epoch = checkpoint['epoch'] + 1
self.mnt_best = checkpoint['monitor_best']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
print("Checkpoint loaded. Resume training from epoch {}".format(self.start_epoch))
def _record_best(self, log):
improved_val = (self.mnt_mode == 'min' and log[self.mnt_metric] <= self.best_recorder['val'][
self.mnt_metric]) or \
(self.mnt_mode == 'max' and log[self.mnt_metric] >= self.best_recorder['val'][self.mnt_metric])
if improved_val:
self.best_recorder['val'].update(log)
improved_test = (self.mnt_mode == 'min' and log[self.mnt_metric_test] <= self.best_recorder['test'][
self.mnt_metric_test]) or \
(self.mnt_mode == 'max' and log[self.mnt_metric_test] >= self.best_recorder['test'][
self.mnt_metric_test])
if improved_test:
self.best_recorder['test'].update(log)
def _print_best(self):
print('Best results (w.r.t {}) in validation set:'.format(self.args.monitor_metric))
for key, value in self.best_recorder['val'].items():
print('\t{:15s}: {}'.format(str(key), value))
print('Best results (w.r.t {}) in test set:'.format(self.args.monitor_metric))
for key, value in self.best_recorder['test'].items():
print('\t{:15s}: {}'.format(str(key), value))
if not os.path.exists('valreports/'):
os.makedirs('valreports/')
if not os.path.exists('testreports/'):
os.makedirs('testreports/')
class Trainer(BaseTrainer):
def __init__(self, model, criterion, metric_ftns, optimizer, args, lr_scheduler, train_dataloader, val_dataloader,
test_dataloader):
super(Trainer, self).__init__(model, criterion, metric_ftns, optimizer, args)
self.lr_scheduler = lr_scheduler
self.train_dataloader = train_dataloader
self.val_dataloader = val_dataloader
self.test_dataloader = test_dataloader
def _train_epoch(self, epoch):
train_loss = 0
self.model.train()
for batch_idx, (images_id, images, reports_ids, reports_masks) in enumerate(self.train_dataloader):
images, reports_ids, reports_masks = images.to(self.device), reports_ids.to(self.device), reports_masks.to(
self.device)
output = self.model(images, reports_ids, mode='train')
loss = self.criterion(output, reports_ids, reports_masks)
train_loss += loss.item()
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_value_(self.model.parameters(), 0.1)
self.optimizer.step()
log = {'train_loss': train_loss / len(self.train_dataloader)}
self.model.eval()
with torch.no_grad():
result_report_val = []
val_gts, val_res = [], []
for batch_idx, (images_id, images, reports_ids, reports_masks) in enumerate(self.val_dataloader):
images, reports_ids, reports_masks = images.to(self.device), reports_ids.to(
self.device), reports_masks.to(self.device)
output = self.model(images, mode='sample')
reports = self.model.tokenizer.decode_batch(output.cpu().numpy())
for i in range(reports_ids.shape[0]):
temp1 = {'reports_ids': images_id[i], 'reports': reports[i]}
result_report_val.append(temp1)
ground_truths = self.model.tokenizer.decode_batch(reports_ids[:, 1:].cpu().numpy())
val_res.extend(reports)
val_gts.extend(ground_truths)
val_met = self.metric_ftns({i: [gt] for i, gt in enumerate(val_gts)},
{i: [re] for i, re in enumerate(val_res)})
log.update(**{'val_' + k: v for k, v in val_met.items()})
resFileval = 'valreports/mixed-' + str(epoch) + '.json'
json.dump(result_report_val, open(resFileval, 'w'))
self.model.eval()
with torch.no_grad():
result_report_test = []
test_gts, test_res = [], []
for batch_idx, (images_id, images, reports_ids, reports_masks) in enumerate(self.test_dataloader):
images, reports_ids, reports_masks = images.to(self.device), reports_ids.to(
self.device), reports_masks.to(self.device)
output = self.model(images, mode='sample')
reports = self.model.tokenizer.decode_batch(output.cpu().numpy())
# print('reportsreportsreportsreports',images_id,reports)
for i in range(reports_ids.shape[0]):
temp = {'reports_ids': images_id[i], 'reports': reports[i]}
result_report_test.append(temp)
ground_truths = self.model.tokenizer.decode_batch(reports_ids[:, 1:].cpu().numpy())
test_res.extend(reports)
test_gts.extend(ground_truths)
test_met = self.metric_ftns({i: [gt] for i, gt in enumerate(test_gts)},
{i: [re] for i, re in enumerate(test_res)})
log.update(**{'test_' + k: v for k, v in test_met.items()})
resFiletest = 'testreports/mixed-' + str(epoch) + '.json'
json.dump(result_report_test, open(resFiletest, 'w'))
self.lr_scheduler.step()
return log |