File size: 15,990 Bytes
6e32a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence

import modules.utils as utils
from modules.caption_model import CaptionModel


def sort_pack_padded_sequence(input, lengths):
    sorted_lengths, indices = torch.sort(lengths, descending=True)
    tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True)
    inv_ix = indices.clone()
    inv_ix[indices] = torch.arange(0, len(indices)).type_as(inv_ix)
    return tmp, inv_ix


def pad_unsort_packed_sequence(input, inv_ix):
    tmp, _ = pad_packed_sequence(input, batch_first=True)
    tmp = tmp[inv_ix]
    return tmp


def pack_wrapper(module, att_feats, att_masks):
    if att_masks is not None:
        packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1))
        return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)
    else:
        return module(att_feats)


class AttModel(CaptionModel):
    def __init__(self, args, tokenizer):
        super(AttModel, self).__init__()
        self.args = args
        self.tokenizer = tokenizer
        self.vocab_size = len(tokenizer.idx2token)
        self.input_encoding_size = args.d_model
        self.rnn_size = args.d_ff
        self.num_layers = args.num_layers
        self.drop_prob_lm = args.drop_prob_lm
        self.max_seq_length = args.max_seq_length
        self.att_feat_size = args.d_vf
        self.att_hid_size = args.d_model

        self.bos_idx = args.bos_idx
        self.eos_idx = args.eos_idx
        self.pad_idx = args.pad_idx

        self.use_bn = args.use_bn

        self.embed = lambda x: x
        self.fc_embed = lambda x: x
        self.att_embed = nn.Sequential(*(
                ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ()) +
                (nn.Linear(self.att_feat_size, self.input_encoding_size),
                 nn.ReLU(),
                 nn.Dropout(self.drop_prob_lm)) +
                ((nn.BatchNorm1d(self.input_encoding_size),) if self.use_bn == 2 else ())))

    def clip_att(self, att_feats, att_masks):
        # Clip the length of att_masks and att_feats to the maximum length
        if att_masks is not None:
            max_len = att_masks.data.long().sum(1).max()
            att_feats = att_feats[:, :max_len].contiguous()
            att_masks = att_masks[:, :max_len].contiguous()
        return att_feats, att_masks

    def _prepare_feature(self, fc_feats, att_feats, att_masks):
        att_feats, att_masks = self.clip_att(att_feats, att_masks)

        # embed fc and att feats
        fc_feats = self.fc_embed(fc_feats)
        att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)

        # Project the attention feats first to reduce memory and computation comsumptions.
        p_att_feats = self.ctx2att(att_feats)

        return fc_feats, att_feats, p_att_feats, att_masks

    def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, output_logsoftmax=1):
        # 'it' contains a word index
        xt = self.embed(it)

        output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks)
        if output_logsoftmax:
            logprobs = F.log_softmax(self.logit(output), dim=1)
        else:
            logprobs = self.logit(output)

        return logprobs, state

    def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
        beam_size = opt.get('beam_size', 10)
        group_size = opt.get('group_size', 1)
        sample_n = opt.get('sample_n', 10)
        # when sample_n == beam_size then each beam is a sample.
        assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
        batch_size = fc_feats.size(0)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)

        assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
        seq = fc_feats.new_full((batch_size * sample_n, self.max_seq_length), self.pad_idx, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size * sample_n, self.max_seq_length, self.vocab_size + 1)
        # lets process every image independently for now, for simplicity

        self.done_beams = [[] for _ in range(batch_size)]

        state = self.init_hidden(batch_size)

        # first step, feed bos
        it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
        logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size,
                                                                                  [p_fc_feats, p_att_feats,
                                                                                   pp_att_feats, p_att_masks]
                                                                                  )
        self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt)
        for k in range(batch_size):
            if sample_n == beam_size:
                for _n in range(sample_n):
                    seq_len = self.done_beams[k][_n]['seq'].shape[0]
                    seq[k * sample_n + _n, :seq_len] = self.done_beams[k][_n]['seq']
                    seqLogprobs[k * sample_n + _n, :seq_len] = self.done_beams[k][_n]['logps']
            else:
                seq_len = self.done_beams[k][0]['seq'].shape[0]
                seq[k, :seq_len] = self.done_beams[k][0]['seq']  # the first beam has highest cumulative score
                seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps']
        # return the samples and their log likelihoods
        return seq, seqLogprobs

    def _sample(self, fc_feats, att_feats, att_masks=None):
        opt = self.args.__dict__
        sample_method = opt.get('sample_method', 'greedy')
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        sample_n = int(opt.get('sample_n', 1))
        group_size = opt.get('group_size', 1)
        output_logsoftmax = opt.get('output_logsoftmax', 1)
        decoding_constraint = opt.get('decoding_constraint', 0)
        block_trigrams = opt.get('block_trigrams', 0)
        if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
            return self._sample_beam(fc_feats, att_feats, att_masks, opt)
        if group_size > 1:
            return self._diverse_sample(fc_feats, att_feats, att_masks, opt)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size * sample_n)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)

        if sample_n > 1:
            p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n,
                                                                                      [p_fc_feats, p_att_feats,
                                                                                       pp_att_feats, p_att_masks]
                                                                                      )

        trigrams = []  # will be a list of batch_size dictionaries

        seq = fc_feats.new_full((batch_size * sample_n, self.max_seq_length), self.pad_idx, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size * sample_n, self.max_seq_length, self.vocab_size + 1)
        for t in range(self.max_seq_length + 1):
            if t == 0:  # input <bos>
                it = fc_feats.new_full([batch_size * sample_n], self.bos_idx, dtype=torch.long)

            logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state,
                                                      output_logsoftmax=output_logsoftmax)

            if decoding_constraint and t > 0:
                tmp = logprobs.new_zeros(logprobs.size())
                tmp.scatter_(1, seq[:, t - 1].data.unsqueeze(1), float('-inf'))
                logprobs = logprobs + tmp

            # Mess with trigrams
            # Copy from https://github.com/lukemelas/image-paragraph-captioning
            if block_trigrams and t >= 3:
                # Store trigram generated at last step
                prev_two_batch = seq[:, t - 3:t - 1]
                for i in range(batch_size):  # = seq.size(0)
                    prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                    current = seq[i][t - 1]
                    if t == 3:  # initialize
                        trigrams.append({prev_two: [current]})  # {LongTensor: list containing 1 int}
                    elif t > 3:
                        if prev_two in trigrams[i]:  # add to list
                            trigrams[i][prev_two].append(current)
                        else:  # create list
                            trigrams[i][prev_two] = [current]
                # Block used trigrams at next step
                prev_two_batch = seq[:, t - 2:t]
                mask = torch.zeros(logprobs.size(), requires_grad=False).cuda()  # batch_size x vocab_size
                for i in range(batch_size):
                    prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                    if prev_two in trigrams[i]:
                        for j in trigrams[i][prev_two]:
                            mask[i, j] += 1
                # Apply mask to log probs
                # logprobs = logprobs - (mask * 1e9)
                alpha = 2.0  # = 4
                logprobs = logprobs + (mask * -0.693 * alpha)  # ln(1/2) * alpha (alpha -> infty works best)

            # sample the next word
            if t == self.max_seq_length:  # skip if we achieve maximum length
                break
            it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature)

            # stop when all finished
            if t == 0:
                unfinished = it != self.eos_idx
            else:
                it[~unfinished] = self.pad_idx  # This allows eos_idx not being overwritten to 0
                logprobs = logprobs * unfinished.unsqueeze(1).float()
                unfinished = unfinished * (it != self.eos_idx)
            seq[:, t] = it
            seqLogprobs[:, t] = logprobs
            # quit loop if all sequences have finished
            if unfinished.sum() == 0:
                break

        return seq, seqLogprobs

    def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}):

        sample_method = opt.get('sample_method', 'greedy')
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        group_size = opt.get('group_size', 1)
        diversity_lambda = opt.get('diversity_lambda', 0.5)
        decoding_constraint = opt.get('decoding_constraint', 0)
        block_trigrams = opt.get('block_trigrams', 0)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)

        trigrams_table = [[] for _ in range(group_size)]  # will be a list of batch_size dictionaries

        seq_table = [fc_feats.new_full((batch_size, self.max_seq_length), self.pad_idx, dtype=torch.long) for _ in
                     range(group_size)]
        seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.max_seq_length) for _ in range(group_size)]
        state_table = [self.init_hidden(batch_size) for _ in range(group_size)]

        for tt in range(self.max_seq_length + group_size):
            for divm in range(group_size):
                t = tt - divm
                seq = seq_table[divm]
                seqLogprobs = seqLogprobs_table[divm]
                trigrams = trigrams_table[divm]
                if t >= 0 and t <= self.max_seq_length - 1:
                    if t == 0:  # input <bos>
                        it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
                    else:
                        it = seq[:, t - 1]  # changed

                    logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats,
                                                                          p_att_masks, state_table[divm])  # changed
                    logprobs = F.log_softmax(logprobs / temperature, dim=-1)

                    # Add diversity
                    if divm > 0:
                        unaug_logprobs = logprobs.clone()
                        for prev_choice in range(divm):
                            prev_decisions = seq_table[prev_choice][:, t]
                            logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda

                    if decoding_constraint and t > 0:
                        tmp = logprobs.new_zeros(logprobs.size())
                        tmp.scatter_(1, seq[:, t - 1].data.unsqueeze(1), float('-inf'))
                        logprobs = logprobs + tmp

                    # Mess with trigrams
                    if block_trigrams and t >= 3:
                        # Store trigram generated at last step
                        prev_two_batch = seq[:, t - 3:t - 1]
                        for i in range(batch_size):  # = seq.size(0)
                            prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                            current = seq[i][t - 1]
                            if t == 3:  # initialize
                                trigrams.append({prev_two: [current]})  # {LongTensor: list containing 1 int}
                            elif t > 3:
                                if prev_two in trigrams[i]:  # add to list
                                    trigrams[i][prev_two].append(current)
                                else:  # create list
                                    trigrams[i][prev_two] = [current]
                        # Block used trigrams at next step
                        prev_two_batch = seq[:, t - 2:t]
                        mask = torch.zeros(logprobs.size(), requires_grad=False).cuda()  # batch_size x vocab_size
                        for i in range(batch_size):
                            prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                            if prev_two in trigrams[i]:
                                for j in trigrams[i][prev_two]:
                                    mask[i, j] += 1
                        # Apply mask to log probs
                        # logprobs = logprobs - (mask * 1e9)
                        alpha = 2.0  # = 4
                        logprobs = logprobs + (mask * -0.693 * alpha)  # ln(1/2) * alpha (alpha -> infty works best)

                    it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1)

                    # stop when all finished
                    if t == 0:
                        unfinished = it != self.eos_idx
                    else:
                        unfinished = seq[:, t - 1] != self.pad_idx & seq[:, t - 1] != self.eos_idx
                        it[~unfinished] = self.pad_idx
                        unfinished = unfinished & (it != self.eos_idx)  # changed
                    seq[:, t] = it
                    seqLogprobs[:, t] = sampleLogprobs.view(-1)

        return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table,
                                                                                           1).reshape(
            batch_size * group_size, -1)