Spaces:
Sleeping
Sleeping
File size: 15,990 Bytes
6e32a75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
import modules.utils as utils
from modules.caption_model import CaptionModel
def sort_pack_padded_sequence(input, lengths):
sorted_lengths, indices = torch.sort(lengths, descending=True)
tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True)
inv_ix = indices.clone()
inv_ix[indices] = torch.arange(0, len(indices)).type_as(inv_ix)
return tmp, inv_ix
def pad_unsort_packed_sequence(input, inv_ix):
tmp, _ = pad_packed_sequence(input, batch_first=True)
tmp = tmp[inv_ix]
return tmp
def pack_wrapper(module, att_feats, att_masks):
if att_masks is not None:
packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1))
return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)
else:
return module(att_feats)
class AttModel(CaptionModel):
def __init__(self, args, tokenizer):
super(AttModel, self).__init__()
self.args = args
self.tokenizer = tokenizer
self.vocab_size = len(tokenizer.idx2token)
self.input_encoding_size = args.d_model
self.rnn_size = args.d_ff
self.num_layers = args.num_layers
self.drop_prob_lm = args.drop_prob_lm
self.max_seq_length = args.max_seq_length
self.att_feat_size = args.d_vf
self.att_hid_size = args.d_model
self.bos_idx = args.bos_idx
self.eos_idx = args.eos_idx
self.pad_idx = args.pad_idx
self.use_bn = args.use_bn
self.embed = lambda x: x
self.fc_embed = lambda x: x
self.att_embed = nn.Sequential(*(
((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ()) +
(nn.Linear(self.att_feat_size, self.input_encoding_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm)) +
((nn.BatchNorm1d(self.input_encoding_size),) if self.use_bn == 2 else ())))
def clip_att(self, att_feats, att_masks):
# Clip the length of att_masks and att_feats to the maximum length
if att_masks is not None:
max_len = att_masks.data.long().sum(1).max()
att_feats = att_feats[:, :max_len].contiguous()
att_masks = att_masks[:, :max_len].contiguous()
return att_feats, att_masks
def _prepare_feature(self, fc_feats, att_feats, att_masks):
att_feats, att_masks = self.clip_att(att_feats, att_masks)
# embed fc and att feats
fc_feats = self.fc_embed(fc_feats)
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
# Project the attention feats first to reduce memory and computation comsumptions.
p_att_feats = self.ctx2att(att_feats)
return fc_feats, att_feats, p_att_feats, att_masks
def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, output_logsoftmax=1):
# 'it' contains a word index
xt = self.embed(it)
output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks)
if output_logsoftmax:
logprobs = F.log_softmax(self.logit(output), dim=1)
else:
logprobs = self.logit(output)
return logprobs, state
def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
group_size = opt.get('group_size', 1)
sample_n = opt.get('sample_n', 10)
# when sample_n == beam_size then each beam is a sample.
assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
batch_size = fc_feats.size(0)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = fc_feats.new_full((batch_size * sample_n, self.max_seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size * sample_n, self.max_seq_length, self.vocab_size + 1)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
state = self.init_hidden(batch_size)
# first step, feed bos
it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size,
[p_fc_feats, p_att_feats,
pp_att_feats, p_att_masks]
)
self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt)
for k in range(batch_size):
if sample_n == beam_size:
for _n in range(sample_n):
seq_len = self.done_beams[k][_n]['seq'].shape[0]
seq[k * sample_n + _n, :seq_len] = self.done_beams[k][_n]['seq']
seqLogprobs[k * sample_n + _n, :seq_len] = self.done_beams[k][_n]['logps']
else:
seq_len = self.done_beams[k][0]['seq'].shape[0]
seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq, seqLogprobs
def _sample(self, fc_feats, att_feats, att_masks=None):
opt = self.args.__dict__
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
sample_n = int(opt.get('sample_n', 1))
group_size = opt.get('group_size', 1)
output_logsoftmax = opt.get('output_logsoftmax', 1)
decoding_constraint = opt.get('decoding_constraint', 0)
block_trigrams = opt.get('block_trigrams', 0)
if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
return self._sample_beam(fc_feats, att_feats, att_masks, opt)
if group_size > 1:
return self._diverse_sample(fc_feats, att_feats, att_masks, opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size * sample_n)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
if sample_n > 1:
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n,
[p_fc_feats, p_att_feats,
pp_att_feats, p_att_masks]
)
trigrams = [] # will be a list of batch_size dictionaries
seq = fc_feats.new_full((batch_size * sample_n, self.max_seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size * sample_n, self.max_seq_length, self.vocab_size + 1)
for t in range(self.max_seq_length + 1):
if t == 0: # input <bos>
it = fc_feats.new_full([batch_size * sample_n], self.bos_idx, dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state,
output_logsoftmax=output_logsoftmax)
if decoding_constraint and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
tmp.scatter_(1, seq[:, t - 1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
# Mess with trigrams
# Copy from https://github.com/lukemelas/image-paragraph-captioning
if block_trigrams and t >= 3:
# Store trigram generated at last step
prev_two_batch = seq[:, t - 3:t - 1]
for i in range(batch_size): # = seq.size(0)
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
current = seq[i][t - 1]
if t == 3: # initialize
trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
elif t > 3:
if prev_two in trigrams[i]: # add to list
trigrams[i][prev_two].append(current)
else: # create list
trigrams[i][prev_two] = [current]
# Block used trigrams at next step
prev_two_batch = seq[:, t - 2:t]
mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size
for i in range(batch_size):
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
if prev_two in trigrams[i]:
for j in trigrams[i][prev_two]:
mask[i, j] += 1
# Apply mask to log probs
# logprobs = logprobs - (mask * 1e9)
alpha = 2.0 # = 4
logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)
# sample the next word
if t == self.max_seq_length: # skip if we achieve maximum length
break
it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature)
# stop when all finished
if t == 0:
unfinished = it != self.eos_idx
else:
it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0
logprobs = logprobs * unfinished.unsqueeze(1).float()
unfinished = unfinished * (it != self.eos_idx)
seq[:, t] = it
seqLogprobs[:, t] = logprobs
# quit loop if all sequences have finished
if unfinished.sum() == 0:
break
return seq, seqLogprobs
def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
group_size = opt.get('group_size', 1)
diversity_lambda = opt.get('diversity_lambda', 0.5)
decoding_constraint = opt.get('decoding_constraint', 0)
block_trigrams = opt.get('block_trigrams', 0)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries
seq_table = [fc_feats.new_full((batch_size, self.max_seq_length), self.pad_idx, dtype=torch.long) for _ in
range(group_size)]
seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.max_seq_length) for _ in range(group_size)]
state_table = [self.init_hidden(batch_size) for _ in range(group_size)]
for tt in range(self.max_seq_length + group_size):
for divm in range(group_size):
t = tt - divm
seq = seq_table[divm]
seqLogprobs = seqLogprobs_table[divm]
trigrams = trigrams_table[divm]
if t >= 0 and t <= self.max_seq_length - 1:
if t == 0: # input <bos>
it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
else:
it = seq[:, t - 1] # changed
logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats,
p_att_masks, state_table[divm]) # changed
logprobs = F.log_softmax(logprobs / temperature, dim=-1)
# Add diversity
if divm > 0:
unaug_logprobs = logprobs.clone()
for prev_choice in range(divm):
prev_decisions = seq_table[prev_choice][:, t]
logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda
if decoding_constraint and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
tmp.scatter_(1, seq[:, t - 1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
# Mess with trigrams
if block_trigrams and t >= 3:
# Store trigram generated at last step
prev_two_batch = seq[:, t - 3:t - 1]
for i in range(batch_size): # = seq.size(0)
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
current = seq[i][t - 1]
if t == 3: # initialize
trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
elif t > 3:
if prev_two in trigrams[i]: # add to list
trigrams[i][prev_two].append(current)
else: # create list
trigrams[i][prev_two] = [current]
# Block used trigrams at next step
prev_two_batch = seq[:, t - 2:t]
mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size
for i in range(batch_size):
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
if prev_two in trigrams[i]:
for j in trigrams[i][prev_two]:
mask[i, j] += 1
# Apply mask to log probs
# logprobs = logprobs - (mask * 1e9)
alpha = 2.0 # = 4
logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)
it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1)
# stop when all finished
if t == 0:
unfinished = it != self.eos_idx
else:
unfinished = seq[:, t - 1] != self.pad_idx & seq[:, t - 1] != self.eos_idx
it[~unfinished] = self.pad_idx
unfinished = unfinished & (it != self.eos_idx) # changed
seq[:, t] = it
seqLogprobs[:, t] = sampleLogprobs.view(-1)
return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table,
1).reshape(
batch_size * group_size, -1)
|