Spaces:
Sleeping
Sleeping
File size: 1,411 Bytes
a5513dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# app.py
import streamlit as st
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import torch
import numpy as np
@st.cache(allow_output_mutation=True)
def load_model():
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')
model = DistilBertForSequenceClassification.from_pretrained('model/')
return tokenizer, model
tokenizer, model = load_model()
st.title('arXiv Article Classifier')
title = st.text_input('Title')
abstract = st.text_area('Abstract')
text = title + ' ' + abstract if abstract else title
if st.button('Predict'):
if not text.strip():
st.error('Please enter at least a title.')
else:
inputs = tokenizer(
text,
truncation=True,
padding=True,
max_length=512,
return_tensors='pt'
)
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=1).numpy()[0]
sorted_indices = np.argsort(-probs)
cumulative = 0
result = []
for idx in sorted_indices:
cumulative += probs[idx]
result.append((model.config.id2label[idx], probs[idx]))
if cumulative >= 0.95:
break
for tag, prob in result:
st.write(f'{tag}: {prob:.2%}') |