Spaces:
Running
on
Zero
Running
on
Zero
Jen Ben Arye
commited on
Commit
·
78757b7
1
Parent(s):
09e9f82
changed base model and added lora adapters
Browse files- ml/kto_lora.py +185 -0
ml/kto_lora.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from accelerate import PartialState
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
6 |
+
from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config, maybe_unpair_preference_dataset, setup_chat_format
|
7 |
+
from kto_dataset_processor import process_feel_dataset
|
8 |
+
from datetime import datetime
|
9 |
+
import wandb
|
10 |
+
|
11 |
+
# PEFT library: attach and load adapters
|
12 |
+
from peft import get_peft_model, PeftModel
|
13 |
+
|
14 |
+
####################################
|
15 |
+
# CONFIGURATION
|
16 |
+
####################################
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class ScriptArguments:
|
20 |
+
"""
|
21 |
+
Configuration for the script.
|
22 |
+
"""
|
23 |
+
process_dataset_func: callable = process_feel_dataset # Function to process dataset
|
24 |
+
checkpoint_path: str = None # Checkpoint path if needed
|
25 |
+
push_to_hub: bool = False # Whether to push the adapter to the HF Hub after training
|
26 |
+
language: str = "en" # Language identifier (e.g., "en", "fr", etc.)
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class ModelArguments(ModelConfig):
|
30 |
+
"""
|
31 |
+
Configuration for the model.
|
32 |
+
"""
|
33 |
+
model_name: str = "CohereForAI/aya-expanse-8b"
|
34 |
+
use_peft: bool = True
|
35 |
+
lora_target_modules: str = "all-linear"
|
36 |
+
lora_r: int = 16
|
37 |
+
lora_alpha: int = 16
|
38 |
+
trust_remote_code: bool = True
|
39 |
+
|
40 |
+
@dataclass
|
41 |
+
class TrainingArguments(KTOConfig):
|
42 |
+
"""
|
43 |
+
Configuration for the KTO trainer.
|
44 |
+
"""
|
45 |
+
output_dir: str = f"kto_{ModelArguments.model_name}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
|
46 |
+
num_train_epochs: int = 1
|
47 |
+
per_device_train_batch_size: int = 4
|
48 |
+
learning_rate: float = 5e-7
|
49 |
+
lr_scheduler_type: str = "cosine"
|
50 |
+
gradient_accumulation_steps: int = 1
|
51 |
+
logging_steps: int = 10
|
52 |
+
eval_steps: int = 500
|
53 |
+
warmup_ratio: float = 0.1
|
54 |
+
bf16: bool = True
|
55 |
+
logging_first_step: bool = True
|
56 |
+
|
57 |
+
# Initialize configurations
|
58 |
+
script_args = ScriptArguments()
|
59 |
+
training_args = TrainingArguments()
|
60 |
+
model_args = ModelArguments()
|
61 |
+
|
62 |
+
####################################
|
63 |
+
# HELPER FUNCTIONS
|
64 |
+
####################################
|
65 |
+
|
66 |
+
def load_model_and_tokenizer(model_args):
|
67 |
+
"""
|
68 |
+
Load the base model and tokenizer from the Hugging Face Hub.
|
69 |
+
"""
|
70 |
+
model = AutoModelForCausalLM.from_pretrained(
|
71 |
+
model_args.model_name,
|
72 |
+
trust_remote_code=model_args.trust_remote_code,
|
73 |
+
torch_dtype=torch.float16,
|
74 |
+
device_map="auto"
|
75 |
+
)
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
77 |
+
model_args.model_name,
|
78 |
+
trust_remote_code=model_args.trust_remote_code
|
79 |
+
)
|
80 |
+
|
81 |
+
# Set pad token if it is missing
|
82 |
+
if tokenizer.pad_token is None:
|
83 |
+
tokenizer.pad_token = tokenizer.eos_token
|
84 |
+
|
85 |
+
# Setup chat format if not available on the tokenizer
|
86 |
+
if not getattr(tokenizer, "chat_template", None):
|
87 |
+
model, tokenizer = setup_chat_format(model, tokenizer)
|
88 |
+
|
89 |
+
return model, tokenizer
|
90 |
+
|
91 |
+
####################################
|
92 |
+
# MAIN LOGIC
|
93 |
+
####################################
|
94 |
+
|
95 |
+
def main():
|
96 |
+
# Initialize wandb for logging
|
97 |
+
wandb.init(project="kto")
|
98 |
+
|
99 |
+
print("Loading base model and tokenizer...")
|
100 |
+
model, tokenizer = load_model_and_tokenizer(model_args)
|
101 |
+
ref_model, _ = load_model_and_tokenizer(model_args)
|
102 |
+
print("Models and tokenizer loaded.")
|
103 |
+
|
104 |
+
# -----------------------------
|
105 |
+
# Adapter Loading or Initialization
|
106 |
+
# -----------------------------
|
107 |
+
# Configure the PEFT / LoRA adapter settings
|
108 |
+
peft_config = get_peft_config(model_args)
|
109 |
+
adapter_dir = os.path.join("adapters", script_args.language)
|
110 |
+
|
111 |
+
if os.path.isdir(adapter_dir):
|
112 |
+
# If an adapter for this language already exists, load it into the base model.
|
113 |
+
model = PeftModel.from_pretrained(model, adapter_dir)
|
114 |
+
print(f"Loaded existing adapter for language '{script_args.language}' from {adapter_dir}.")
|
115 |
+
else:
|
116 |
+
# Otherwise, initialize a new LoRA adapter.
|
117 |
+
model = get_peft_model(model, peft_config)
|
118 |
+
print(f"No adapter found for language '{script_args.language}'. Initialized new adapter.")
|
119 |
+
|
120 |
+
# -----------------------------
|
121 |
+
# Data Preparation and Training
|
122 |
+
# -----------------------------
|
123 |
+
print("Processing dataset...")
|
124 |
+
dataset = script_args.process_dataset_func()
|
125 |
+
print("Dataset processed.")
|
126 |
+
|
127 |
+
print("Initializing trainer...")
|
128 |
+
trainer = KTOTrainer(
|
129 |
+
model=model,
|
130 |
+
ref_model=ref_model,
|
131 |
+
args=training_args,
|
132 |
+
train_dataset=dataset["train"],
|
133 |
+
eval_dataset=dataset["test"],
|
134 |
+
processing_class=tokenizer,
|
135 |
+
peft_config=peft_config,
|
136 |
+
)
|
137 |
+
|
138 |
+
# Training
|
139 |
+
print("Starting training...")
|
140 |
+
trainer.train()
|
141 |
+
print("Training completed.")
|
142 |
+
|
143 |
+
# Evaluation
|
144 |
+
print("Evaluating model...")
|
145 |
+
metrics = trainer.evaluate()
|
146 |
+
print(f"Metrics: {metrics}")
|
147 |
+
trainer.log_metrics("eval", metrics)
|
148 |
+
trainer.save_metrics("eval", metrics)
|
149 |
+
|
150 |
+
# Log metrics to wandb
|
151 |
+
wandb.log({
|
152 |
+
"epoch": metrics.get("epoch"),
|
153 |
+
"grad_norm": metrics.get("grad_norm"),
|
154 |
+
"kl": metrics.get("kl"),
|
155 |
+
"learning_rate": metrics.get("learning_rate"),
|
156 |
+
"logits/chosen": metrics.get("logits/chosen"),
|
157 |
+
"logits/rejected": metrics.get("logits/rejected"),
|
158 |
+
"logps/chosen": metrics.get("logps/chosen"),
|
159 |
+
"logps/rejected": metrics.get("logps/rejected"),
|
160 |
+
"loss": metrics.get("loss"),
|
161 |
+
"rewards/chosen": metrics.get("rewards/chosen"),
|
162 |
+
"rewards/margins": metrics.get("rewards/margins"),
|
163 |
+
"rewards/rejected": metrics.get("rewards/rejected"),
|
164 |
+
"step": metrics.get("step")
|
165 |
+
})
|
166 |
+
|
167 |
+
# -----------------------------
|
168 |
+
# Adapter Saving
|
169 |
+
# -----------------------------
|
170 |
+
print("Saving adapter...")
|
171 |
+
os.makedirs(adapter_dir, exist_ok=True)
|
172 |
+
model.save_pretrained(adapter_dir)
|
173 |
+
print(f"Adapter for language '{script_args.language}' saved to: {adapter_dir}")
|
174 |
+
|
175 |
+
if script_args.push_to_hub:
|
176 |
+
print("Pushing adapter to Hugging Face Hub...")
|
177 |
+
model.push_to_hub(repo_id=f"your_hf_org/{script_args.language}-adapter")
|
178 |
+
|
179 |
+
print("Process completed.")
|
180 |
+
|
181 |
+
# Finish wandb run
|
182 |
+
wandb.finish()
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
main()
|