File size: 5,378 Bytes
cbe2793
fc31c67
cbe2793
 
d8fce5c
fc31c67
cbe2793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc31c67
cbe2793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc31c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8fce5c
fc31c67
 
d8fce5c
fc31c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

import re
import torch
import torch.nn.functional as F
import os
import json

    
class CustomRepetitionPenaltyLogitsProcessorRepeat():

    def __init__(self, penalty: float, max_input_ids, past_window):
        if not isinstance(penalty, float) or not (penalty > 0):
            raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")

        self.penalty = penalty
        self.max_input_ids = max_input_ids
        self.past_window = past_window

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        
        input_ids = input_ids[:, -self.past_window:]
        freq = F.one_hot(input_ids, scores.size(1)).sum(1)
        freq[self.max_input_ids:] = 0
        alpha = self.penalty**freq
        scores = scores.contiguous()
        scores = torch.where(scores < 0, scores*alpha, scores/alpha)

        return scores
    
class CustomRepetitionPenaltyLogitsProcessor():

    def __init__(self, penalty: float, max_input_ids, past_window):
        if not isinstance(penalty, float) or not (penalty > 0):
            raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")

        self.penalty = penalty
        self.max_input_ids = max_input_ids
        self.past_window = past_window

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        
        input_ids = input_ids[:, -self.past_window:]
        score = torch.gather(scores, 1, input_ids)
        _score = score.detach().clone()
        score = torch.where(score < 0, score * self.penalty, score / self.penalty)
        score[input_ids>=self.max_input_ids] = _score[input_ids>=self.max_input_ids]
        scores.scatter_(1, input_ids, score)
        
        return scores

class HomophonesReplacer:
    """
    Homophones Replacer

    Replace the mispronounced characters with correctly pronounced ones.

    Creation process of homophones_map.json:

    1. Establish a word corpus using the [Tencent AI Lab Embedding Corpora v0.2.0 large] with 12 million entries. After cleaning, approximately 1.8 million entries remain. Use ChatTTS to infer the text.
    2. Record discrepancies between the inferred and input text, identifying about 180,000 misread words.
    3. Create a pinyin to common characters mapping using correctly read characters by ChatTTS.
    4. For each discrepancy, extract the correct pinyin using [python-pinyin] and find homophones with the correct pronunciation from the mapping.

    Thanks to:
    [Tencent AI Lab Embedding Corpora for Chinese and English Words and Phrases](https://ai.tencent.com/ailab/nlp/en/embedding.html)
    [python-pinyin](https://github.com/mozillazg/python-pinyin)

    """
    def __init__(self, map_file_path):
        self.homophones_map = self.load_homophones_map(map_file_path)

    def load_homophones_map(self, map_file_path):
        with open(map_file_path, 'r', encoding='utf-8') as f:
            homophones_map = json.load(f)
        return homophones_map

    def replace(self, text):
        result = []
        for char in text:
            if char in self.homophones_map:
                result.append(self.homophones_map[char])
            else:
                result.append(char)
        return ''.join(result)

def count_invalid_characters(s):
    
    s = re.sub(r'\[uv_break\]|\[laugh\]|\[lbreak\]', '', s)
    pattern = re.compile(r'[^\u4e00-\u9fffA-Za-z,。、,\. ]')
    non_alphabetic_chinese_chars = pattern.findall(s)
    return set(non_alphabetic_chinese_chars)

def detect_language(sentence):

    chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]')
    english_word_pattern = re.compile(r'\b[A-Za-z]+\b')

    chinese_chars = chinese_char_pattern.findall(sentence)
    english_words = english_word_pattern.findall(sentence)

    if len(chinese_chars) > len(english_words):
        return "zh"
    else:
        return "en"
    
    
character_map = {
    ':': ',',
    ';': ',',
    '!': '。',
    '(': ',',
    ')': ',',
    '【': ',',
    '】': ',',
    '『': ',',
    '』': ',',
    '「': ',',
    '」': ',',
    '《': ',',
    '》': ',',
    '-': ',',
    '‘': '',
    '“': '',
    '’': '',
    '”': '',
    ':': ',',
    ';': ',',
    '!': '.',
    '(': ',',
    ')': ',',
    '[': ',',
    ']': ',',
    '>': ',',
    '<': ',',
    '-': ',',
}

halfwidth_2_fullwidth_map = {
        '!': '!',
        '"': '“',
        "'": '‘',
        '#': '#',
        '$': '$',
        '%': '%',
        '&': '&',
        '(': '(',
        ')': ')',
        ',': ',',
        '-': '-',
        '*': '*',
        '+': '+',
        '.': '。',
        '/': '/',
        ':': ':',
        ';': ';',
        '<': '<',
        '=': '=',
        '>': '>',
        '?': '?',
        '@': '@',
        # '[': '[',
        '\\': '\',
        # ']': ']',
        '^': '^',
        # '_': '_',
        '`': '`',
        '{': '{',
        '|': '|',
        '}': '}',
        '~': '~'
    }

def apply_half2full_map(text):
    translation_table = str.maketrans(halfwidth_2_fullwidth_map)
    return text.translate(translation_table)

def apply_character_map(text):
    translation_table = str.maketrans(character_map)
    return text.translate(translation_table)