Spaces:
Running
Running
File size: 12,695 Bytes
d8fce5c cbe2793 fc31c67 cbe2793 fc31c67 d8fce5c cbe2793 fc31c67 cbe2793 fc31c67 cbe2793 fc31c67 d8fce5c cbe2793 fc31c67 d8fce5c cbe2793 d8fce5c cbe2793 fc31c67 d8fce5c cbe2793 d8fce5c cbe2793 fc31c67 d8fce5c fc31c67 cbe2793 fc31c67 d8fce5c cbe2793 d8fce5c fc31c67 cbe2793 d8fce5c cbe2793 d8fce5c cbe2793 fc31c67 d8fce5c fc31c67 cbe2793 fc31c67 cbe2793 d8fce5c cbe2793 fc31c67 d8fce5c cbe2793 d8fce5c cbe2793 fc31c67 cbe2793 fc31c67 cbe2793 fc31c67 d8fce5c fc31c67 cbe2793 fc31c67 cbe2793 fc31c67 cbe2793 d8fce5c cbe2793 fc31c67 cbe2793 fc31c67 d8fce5c fc31c67 d8fce5c fc31c67 d8fce5c fc31c67 cbe2793 fc31c67 cbe2793 fc31c67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import os
import json
import logging
from functools import partial
from typing import Literal
import tempfile
import torch
from omegaconf import OmegaConf
from vocos import Vocos
from huggingface_hub import snapshot_download
from .model.dvae import DVAE
from .model.gpt import GPT_warpper
from .utils.gpu_utils import select_device
from .utils.infer_utils import count_invalid_characters, detect_language, apply_character_map, apply_half2full_map, HomophonesReplacer
from .utils.io_utils import get_latest_modified_file
from .infer.api import refine_text, infer_code
from .utils.download import check_all_assets, download_all_assets
logging.basicConfig(level = logging.INFO)
class Chat:
def __init__(self, ):
self.pretrain_models = {}
self.normalizer = {}
self.homophones_replacer = None
self.logger = logging.getLogger(__name__)
def check_model(self, level = logging.INFO, use_decoder = False):
not_finish = False
check_list = ['vocos', 'gpt', 'tokenizer']
if use_decoder:
check_list.append('decoder')
else:
check_list.append('dvae')
for module in check_list:
if module not in self.pretrain_models:
self.logger.log(logging.WARNING, f'{module} not initialized.')
not_finish = True
if not not_finish:
self.logger.log(level, f'All initialized.')
return not not_finish
def load_models(
self,
source: Literal['huggingface', 'local', 'custom']='local',
force_redownload=False,
custom_path='<LOCAL_PATH>',
**kwargs,
):
if source == 'local':
download_path = os.getcwd()
if not check_all_assets(update=True):
with tempfile.TemporaryDirectory() as tmp:
download_all_assets(tmpdir=tmp)
if not check_all_assets(update=False):
logging.error("counld not satisfy all assets needed.")
exit(1)
elif source == 'huggingface':
hf_home = os.getenv('HF_HOME', os.path.expanduser("~/.cache/huggingface"))
try:
download_path = get_latest_modified_file(os.path.join(hf_home, 'hub/models--2Noise--ChatTTS/snapshots'))
except:
download_path = None
if download_path is None or force_redownload:
self.logger.log(logging.INFO, f'Download from HF: https://huggingface.co/2Noise/ChatTTS')
download_path = snapshot_download(repo_id="2Noise/ChatTTS", allow_patterns=["*.pt", "*.yaml"])
else:
self.logger.log(logging.INFO, f'Load from cache: {download_path}')
elif source == 'custom':
self.logger.log(logging.INFO, f'Load from local: {custom_path}')
download_path = custom_path
self._load(**{k: os.path.join(download_path, v) for k, v in OmegaConf.load(os.path.join(download_path, 'config', 'path.yaml')).items()}, **kwargs)
def _load(
self,
vocos_config_path: str = None,
vocos_ckpt_path: str = None,
dvae_config_path: str = None,
dvae_ckpt_path: str = None,
gpt_config_path: str = None,
gpt_ckpt_path: str = None,
decoder_config_path: str = None,
decoder_ckpt_path: str = None,
tokenizer_path: str = None,
device: str = None,
compile: bool = True,
):
if not device:
device = select_device(4096)
self.logger.log(logging.INFO, f'use {device}')
if vocos_config_path:
vocos = Vocos.from_hparams(vocos_config_path).to(
# vocos on mps will crash, use cpu fallback
"cpu" if torch.backends.mps.is_available() else device
).eval()
assert vocos_ckpt_path, 'vocos_ckpt_path should not be None'
vocos.load_state_dict(torch.load(vocos_ckpt_path))
self.pretrain_models['vocos'] = vocos
self.logger.log(logging.INFO, 'vocos loaded.')
if dvae_config_path:
cfg = OmegaConf.load(dvae_config_path)
dvae = DVAE(**cfg).to(device).eval()
assert dvae_ckpt_path, 'dvae_ckpt_path should not be None'
dvae.load_state_dict(torch.load(dvae_ckpt_path))
self.pretrain_models['dvae'] = dvae
self.logger.log(logging.INFO, 'dvae loaded.')
if gpt_config_path:
cfg = OmegaConf.load(gpt_config_path)
gpt = GPT_warpper(**cfg).to(device).eval()
assert gpt_ckpt_path, 'gpt_ckpt_path should not be None'
gpt.load_state_dict(torch.load(gpt_ckpt_path))
if compile and 'cuda' in str(device):
try:
gpt.gpt.forward = torch.compile(gpt.gpt.forward, backend='inductor', dynamic=True)
except RuntimeError as e:
logging.warning(f'Compile failed,{e}. fallback to normal mode.')
self.pretrain_models['gpt'] = gpt
spk_stat_path = os.path.join(os.path.dirname(gpt_ckpt_path), 'spk_stat.pt')
assert os.path.exists(spk_stat_path), f'Missing spk_stat.pt: {spk_stat_path}'
self.pretrain_models['spk_stat'] = torch.load(spk_stat_path).to(device)
self.logger.log(logging.INFO, 'gpt loaded.')
if decoder_config_path:
cfg = OmegaConf.load(decoder_config_path)
decoder = DVAE(**cfg).to(device).eval()
assert decoder_ckpt_path, 'decoder_ckpt_path should not be None'
decoder.load_state_dict(torch.load(decoder_ckpt_path, map_location='cpu'))
self.pretrain_models['decoder'] = decoder
self.logger.log(logging.INFO, 'decoder loaded.')
if tokenizer_path:
tokenizer = torch.load(tokenizer_path, map_location='cpu')
tokenizer.padding_side = 'left'
self.pretrain_models['tokenizer'] = tokenizer
self.logger.log(logging.INFO, 'tokenizer loaded.')
self.check_model()
def _infer(
self,
text,
skip_refine_text=False,
refine_text_only=False,
params_refine_text={},
params_infer_code={'prompt':'[speed_5]'},
use_decoder=True,
do_text_normalization=True,
lang=None,
stream=False,
do_homophone_replacement=True
):
assert self.check_model(use_decoder=use_decoder)
if not isinstance(text, list):
text = [text]
if do_text_normalization:
for i, t in enumerate(text):
_lang = detect_language(t) if lang is None else lang
if self.init_normalizer(_lang):
text[i] = self.normalizer[_lang](t)
if _lang == 'zh':
text[i] = apply_half2full_map(text[i])
for i, t in enumerate(text):
invalid_characters = count_invalid_characters(t)
if len(invalid_characters):
self.logger.log(logging.WARNING, f'Invalid characters found! : {invalid_characters}')
text[i] = apply_character_map(t)
if do_homophone_replacement and self.init_homophones_replacer():
text[i] = self.homophones_replacer.replace(t)
if t != text[i]:
self.logger.log(logging.INFO, f'Homophones replace: {t} -> {text[i]}')
if not skip_refine_text:
text_tokens = refine_text(
self.pretrain_models,
text,
**params_refine_text,
)['ids']
text_tokens = [i[i < self.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens]
text = self.pretrain_models['tokenizer'].batch_decode(text_tokens)
if refine_text_only:
yield text
return
text = [params_infer_code.get('prompt', '') + i for i in text]
params_infer_code.pop('prompt', '')
result_gen = infer_code(self.pretrain_models, text, **params_infer_code, return_hidden=use_decoder, stream=stream)
if use_decoder:
field = 'hiddens'
docoder_name = 'decoder'
else:
field = 'ids'
docoder_name = 'dvae'
vocos_decode = lambda spec: [self.pretrain_models['vocos'].decode(
i.cpu() if torch.backends.mps.is_available() else i
).cpu().numpy() for i in spec]
if stream:
length = 0
for result in result_gen:
chunk_data = result[field][0]
assert len(result[field]) == 1
start_seek = length
length = len(chunk_data)
self.logger.debug(f'{start_seek=} total len: {length}, new len: {length - start_seek = }')
chunk_data = chunk_data[start_seek:]
if not len(chunk_data):
continue
self.logger.debug(f'new hidden {len(chunk_data)=}')
mel_spec = [self.pretrain_models[docoder_name](i[None].permute(0,2,1)) for i in [chunk_data]]
wav = vocos_decode(mel_spec)
self.logger.debug(f'yield wav chunk {len(wav[0])=} {len(wav[0][0])=}')
yield wav
return
mel_spec = [self.pretrain_models[docoder_name](i[None].permute(0,2,1)) for i in next(result_gen)[field]]
yield vocos_decode(mel_spec)
def infer(
self,
text,
skip_refine_text=False,
refine_text_only=False,
params_refine_text={},
params_infer_code={'prompt':'[speed_5]'},
use_decoder=True,
do_text_normalization=True,
lang=None,
stream=False,
do_homophone_replacement=True,
):
res_gen = self._infer(
text,
skip_refine_text,
refine_text_only,
params_refine_text,
params_infer_code,
use_decoder,
do_text_normalization,
lang,
stream,
do_homophone_replacement,
)
if stream:
return res_gen
else:
return next(res_gen)
def sample_random_speaker(self, ):
dim = self.pretrain_models['gpt'].gpt.layers[0].mlp.gate_proj.in_features
std, mean = self.pretrain_models['spk_stat'].chunk(2)
return torch.randn(dim, device=std.device) * std + mean
def init_normalizer(self, lang) -> bool:
if lang in self.normalizer:
return True
if lang == 'zh':
try:
from tn.chinese.normalizer import Normalizer
self.normalizer[lang] = Normalizer().normalize
return True
except:
self.logger.log(
logging.WARNING,
'Package WeTextProcessing not found!',
)
self.logger.log(
logging.WARNING,
'Run: conda install -c conda-forge pynini=2.1.5 && pip install WeTextProcessing',
)
else:
try:
from nemo_text_processing.text_normalization.normalize import Normalizer
self.normalizer[lang] = partial(Normalizer(input_case='cased', lang=lang).normalize, verbose=False, punct_post_process=True)
return True
except:
self.logger.log(
logging.WARNING,
'Package nemo_text_processing not found!',
)
self.logger.log(
logging.WARNING,
'Run: conda install -c conda-forge pynini=2.1.5 && pip install nemo_text_processing',
)
return False
def init_homophones_replacer(self):
if self.homophones_replacer:
return True
else:
try:
self.homophones_replacer = HomophonesReplacer(os.path.join(os.path.dirname(__file__), 'res', 'homophones_map.json'))
self.logger.log(logging.INFO, 'homophones_replacer loaded.')
return True
except (IOError, json.JSONDecodeError) as e:
self.logger.log(logging.WARNING, f'Error loading homophones map: {e}')
except Exception as e:
self.logger.log(logging.WARNING, f'Error loading homophones_replacer: {e}')
return False
|