fazil99's picture
Upload 2 files
1d9d928 verified
import gradio as gr
import pdfplumber
import docx
import os
import datetime
from transformers import pipeline
# Load open-source LLMs
summary_llm = pipeline("summarization", model="google/pegasus-xsum", tokenizer="google/pegasus-xsum")
text_llm = pipeline("text2text-generation", model="MBZUAI/LaMini-T5-738M", tokenizer="MBZUAI/LaMini-T5-738M")
# Extract text from files
def extract_text(file):
if file.name.endswith(".pdf"):
with pdfplumber.open(file.name) as pdf:
return "\n".join([p.extract_text() for p in pdf.pages if p.extract_text()])
elif file.name.endswith(".docx"):
doc = docx.Document(file)
return "\n".join([para.text for para in doc.paragraphs])
elif file.name.endswith(".txt"):
return file.read().decode("utf-8")
else:
return "Unsupported file format."
# Format glossary visually
def format_glossary_html(glossary_text):
lines = glossary_text.split('\n')
html = ""
for line in lines:
if ":" in line:
term, desc = line.split(":", 1)
html += f"<b style='color:#1e3a8a'>{term.strip()}</b>: {desc.strip()}<br>"
else:
html += f"{line}<br>"
return html
# Generate summary
def generate_summary(text):
return summary_llm(text[:1024], max_length=250, min_length=80, do_sample=False)[0]["summary_text"]
# Generate text (glossary/verdict/custom)
def generate_text_response(prompt, max_len=512):
return text_llm(prompt, max_length=max_len, do_sample=True)[0]["generated_text"]
# Main document analyzer
def analyze_document(file):
filename = os.path.basename(file.name)
text = extract_text(file)
if not text.strip():
return "No content found in file.", "", "", "", "", None, ""
short_text = text[:3000]
# Enhanced prompts
summary_prompt = f"""
You are a legal assistant. Read the following legal document and generate a comprehensive summary.
Include: parties involved, key facts, legal issues, arguments, court observations, and likely outcome.
Document:
{short_text}
"""
glossary_prompt = f"""
Extract and explain all legal terms, laws, or references. Format:
Term: ...
Explanation: ...
Document:
{short_text}
"""
verdict_prompt = f"""
Based on the document, predict the likely verdict in 2–3 sentences using standard legal reasoning.
Document:
{short_text}
"""
# Run LLMs
summary = generate_summary(short_text)
glossary = generate_text_response(glossary_prompt)
verdict = generate_text_response(verdict_prompt)
glossary_html = format_glossary_html(glossary)
# Save report
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
output_filename = f"LegalSummary_{timestamp}.txt"
with open(output_filename, "w", encoding="utf-8") as f:
f.write(f"πŸ“„ File: {filename}\nπŸ•’ Time: {timestamp}\n\n")
f.write("=== πŸ“‘ Summary ===\n" + summary + "\n\n")
f.write("=== πŸ“˜ Glossary ===\n" + glossary + "\n\n")
f.write("=== βš–οΈ Verdict ===\n" + verdict + "\n")
return text, summary, glossary, glossary_html, verdict, output_filename, short_text
# Custom prompt answer
def custom_prompt_response(doc_text, user_prompt):
if not doc_text.strip() or not user_prompt.strip():
return "⚠️ Please provide both a document and a prompt."
prompt = f"""
You are a legal expert. Answer the question below using only the document provided.
Question:
{user_prompt.strip()}
Document:
{doc_text.strip()}
"""
return generate_text_response(prompt)
# Gradio UI
with gr.Blocks(css="body { background-color: #f9f9f9; font-family: 'Segoe UI'; }") as demo:
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("""
<div style='text-align: center; font-size: 28px; font-weight: bold; color: #1e3a8a; margin-bottom: 10px;'>
🧾 Legal Document Summarizer Using LLMs
</div>
<div style='text-align: center; font-size: 16px; color: #444444; margin-bottom: 25px;'>
Upload legal documents in PDF, DOCX, or TXT format to receive structured summaries, legal term glossaries, and AI-inferred verdicts using open-source language models.
</div>
""")
file_input = gr.File(label="πŸ“ Upload Legal Document")
submit_btn = gr.Button("πŸ” Analyze Document")
download_btn = gr.File(label="⬇️ Download Report")
with gr.Column(scale=1):
gr.Markdown("### πŸ’‘ Features")
gr.Markdown("""
- πŸ“ AI-generated legal summaries
- πŸ“˜ Glossary of legal terms
- βš–οΈ Inferred legal verdict
- ❓ Custom Q&A based on the document
""")
extracted = gr.Textbox(label="πŸ“„ Extracted Text", lines=10, interactive=False)
summary = gr.Textbox(label="πŸ“ Summary", lines=6, interactive=False)
glossary_raw = gr.Textbox(visible=False)
glossary_html = gr.HTML(label="πŸ“˜ Glossary of Legal Terms")
final_verdict = gr.Textbox(label="βš–οΈ Verdict (AI Inferred)", lines=3, interactive=False)
with gr.Row():
gr.Markdown("### ❓ Ask a Question About the Document")
user_prompt = gr.Textbox(label="Your Question", placeholder="e.g., What is the legal issue?")
custom_response = gr.Textbox(label="πŸ€– AI Answer", lines=4)
custom_btn = gr.Button("🧠 Get Answer")
hidden_doc_text = gr.Textbox(visible=False)
submit_btn.click(fn=analyze_document, inputs=[file_input], outputs=[
extracted, summary, glossary_raw, glossary_html, final_verdict, download_btn, hidden_doc_text
])
custom_btn.click(fn=custom_prompt_response, inputs=[hidden_doc_text, user_prompt], outputs=custom_response)
demo.launch()