fatsam commited on
Commit
e67e19e
·
1 Parent(s): 29e4c72

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -152
app.py CHANGED
@@ -1,153 +1,13 @@
1
- import tensorflow.keras as keras
2
- import extract_bottleneck_features
3
- import cv2
4
  import gradio as gr
5
- import numpy as np
6
- from glob import glob
7
- from keras.preprocessing import image
8
- InceptionV3_model = keras.models.load_model("weights.best.InceptionV3.hdf5",)
9
-
10
- #dog_names = [item[20:-1] for item in sorted(glob("dogImages/train/*/"))]
11
-
12
- dog_names= ['Affenpinscher', 'Afghan_hound', 'Airedale_terrier', 'Akita', 'Alaskan_malamute', 'American_eskimo_dog', 'American_foxhound', 'American_staffordshire_terrier', 'American_water_spaniel', 'Anatolian_shepherd_dog', 'Australian_cattle_dog', 'Australian_shepherd', 'Australian_terrier', 'Basenji', 'Basset_hound', 'Beagle', 'Bearded_collie', 'Beauceron', 'Bedlington_terrier', 'Belgian_malinois', 'Belgian_sheepdog', 'Belgian_tervuren', 'Bernese_mountain_dog', 'Bichon_frise', 'Black_and_tan_coonhound', 'Black_russian_terrier', 'Bloodhound', 'Bluetick_coonhound', 'Border_collie', 'Border_terrier', 'Borzoi', 'Boston_terrier', 'Bouvier_des_flandres', 'Boxer', 'Boykin_spaniel', 'Briard', 'Brittany', 'Brussels_griffon', 'Bull_terrier', 'Bulldog', 'Bullmastiff', 'Cairn_terrier', 'Canaan_dog', 'Cane_corso', 'Cardigan_welsh_corgi', 'Cavalier_king_charles_spaniel', 'Chesapeake_bay_retriever', 'Chihuahua', 'Chinese_crested', 'Chinese_shar-pei', 'Chow_chow', 'Clumber_spaniel', 'Cocker_spaniel', 'Collie', 'Curly-coated_retriever', 'Dachshund', 'Dalmatian', 'Dandie_dinmont_terrier', 'Doberman_pinscher', 'Dogue_de_bordeaux', 'English_cocker_spaniel', 'English_setter', 'English_springer_spaniel', 'English_toy_spaniel', 'Entlebucher_mountain_dog', 'Field_spaniel', 'Finnish_spitz', 'Flat-coated_retriever', 'French_bulldog', 'German_pinscher', 'German_shepherd_dog', 'German_shorthaired_pointer', 'German_wirehaired_pointer', 'Giant_schnauzer', 'Glen_of_imaal_terrier', 'Golden_retriever', 'Gordon_setter', 'Great_dane', 'Great_pyrenees', 'Greater_swiss_mountain_dog', 'Greyhound', 'Havanese', 'Ibizan_hound', 'Icelandic_sheepdog', 'Irish_red_and_white_setter', 'Irish_setter', 'Irish_terrier', 'Irish_water_spaniel', 'Irish_wolfhound', 'Italian_greyhound', 'Japanese_chin', 'Keeshond', 'Kerry_blue_terrier', 'Komondor', 'Kuvasz', 'Labrador_retriever', 'Lakeland_terrier', 'Leonberger', 'Lhasa_apso', 'Lowchen', 'Maltese', 'Manchester_terrier', 'Mastiff', 'Miniature_schnauzer', 'Neapolitan_mastiff', 'Newfoundland', 'Norfolk_terrier', 'Norwegian_buhund', 'Norwegian_elkhound', 'Norwegian_lundehund', 'Norwich_terrier', 'Nova_scotia_duck_tolling_retriever', 'Old_english_sheepdog', 'Otterhound', 'Papillon', 'Parson_russell_terrier', 'Pekingese', 'Pembroke_welsh_corgi', 'Petit_basset_griffon_vendeen', 'Pharaoh_hound', 'Plott', 'Pointer', 'Pomeranian', 'Poodle', 'Portuguese_water_dog', 'Saint_bernard', 'Silky_terrier', 'Smooth_fox_terrier', 'Tibetan_mastiff', 'Welsh_springer_spaniel', 'Wirehaired_pointing_griffon', 'Xoloitzcuintli', 'Yorkshire_terrier']
13
-
14
- labels = dog_names
15
-
16
- def extract_InceptionV3(tensor):
17
- from keras.applications.inception_v3 import InceptionV3, preprocess_input
18
- return InceptionV3(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
19
-
20
-
21
- def extract_Resnet50(tensor):
22
- from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
23
- return ResNet50(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
24
-
25
-
26
- ###########################################
27
-
28
- from tensorflow.keras.applications.resnet50 import preprocess_input
29
-
30
- ######################################
31
-
32
- import tensorflow as tf
33
- from keras.preprocessing import image
34
- from tqdm import tqdm
35
-
36
- ######################################
37
-
38
- from tensorflow.keras.applications.resnet50 import ResNet50
39
- # define ResNet50 model
40
- ResNet50_model = ResNet50(weights='imagenet')
41
-
42
- from keras.preprocessing import image
43
- from tqdm import tqdm
44
-
45
-
46
-
47
- from tensorflow.keras.applications.resnet50 import preprocess_input
48
-
49
- def ResNet50_predict_labels(img):
50
- # returns prediction vector for image located at img_path
51
- img = np.expand_dims(img, axis=0)
52
- img = preprocess_input((img))
53
- return np.argmax(ResNet50_model.predict(img))
54
-
55
-
56
- def path_to_tensor(img_path):
57
- # loads RGB image as PIL.Image.Image type
58
- #img = image.load_img(img_path, target_size=(224, 224))
59
- # convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3)
60
- #x = image.img_to_array(img)
61
- # convert 3D tensor to 4D tensor with shape (1, 224, 224, 3) and return 4D tensor
62
- return np.expand_dims(img_path, axis=0)
63
-
64
-
65
-
66
- # extract pre-trained face detector
67
- face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
68
-
69
-
70
-
71
- def face_detector(image):
72
- """
73
- returns "True" if face is detected in image stored at image
74
-
75
- """
76
-
77
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
78
- faces = face_cascade.detectMultiScale(gray)
79
- if len(faces) > 0:
80
- return "Number of human faces found in this image: {}". format(len(faces))
81
- else:
82
- return "There are no human faces in this image"
83
-
84
-
85
-
86
-
87
- def InceptionV3_prediction_breed(img_path):
88
- """
89
- Return: dog breed that is predicted by the model
90
- input: image
91
- """
92
-
93
- # extract bottleneck features
94
- bottleneck_feature = extract_InceptionV3(path_to_tensor(img_path))
95
- # obtain predicted vector
96
- predicted_vector = InceptionV3_model.predict(bottleneck_feature)
97
- # return dog breed that is predicted by the model
98
- return dog_names[np.argmax(predicted_vector)].split('.')[-1]
99
-
100
-
101
-
102
- def dog_detector(img):
103
- """
104
- input: uploaded image by user
105
- return: "True" if a dog is detected in the image stored at img
106
- """
107
-
108
- prediction = ResNet50_predict_labels(img)
109
- return ((prediction <= 268) & (prediction >= 151))
110
-
111
- def identify_dog_app(img):
112
- """This function predicts the breed of the human or dog"
113
-
114
- input: uploaded image by user
115
- Return: dog or human, and breed of the uploaded image
116
- """
117
-
118
- breed = InceptionV3_prediction_breed(img)
119
- if dog_detector(img):
120
- return("This looks like a dog and its breed is:"),"{}".format(breed)
121
- elif face_detector(img):
122
- return("This looks like a human but might be classified as a dog of the following breed:"),"{}".format(breed)
123
- else:
124
- return("I have no idea what this might be. Please upload another image!"), ("Not applicable")
125
-
126
-
127
-
128
-
129
- image = gr.inputs.Image(shape=(224, 224), label="Image")
130
- label = gr.outputs.Label(num_top_classes=1)
131
-
132
- iface = gr.Interface(
133
- fn=identify_dog_app,
134
- inputs=image,
135
- outputs=[gr.outputs.Label(label="Human or Dog?"), gr.outputs.Label(label="Breed:")],
136
- title="Human or dog Identification - Breed Classification",
137
- #description ="Please find the jypyter notebook on ___",
138
- article =
139
- '<b><span style="color: #ff9900;">Acknowledgement:</span></b><br/>'
140
- +'<p><span style="color: #ff9900;">I would like to express my special thanks of gratitude'
141
- +'to Misk &amp; Sdaia for giving me the opportunity to enrol in "Data Scientist" Udacity nanodegree,'
142
- +'&nbsp;as well as to my mentor Mr. Haroon who was of great help during my learning journey.</span></p>'
143
- +'<p><span style="color: #ff9900;">This is my capstone project and herewith I finish this ND.</span></p>',
144
-
145
- theme="dark-huggingface"
146
-
147
- )
148
-
149
- iface.launch(share=False)
150
-
151
-
152
-
153
-
 
 
 
 
1
  import gradio as gr
2
+ from gradio.mix import Series
3
+
4
+ description = "Generate your own D&D story!"
5
+ title = "French Story Generator using Opus MT and GPT-2"
6
+ translator_fr = gr.Interface.load("huggingface/Helsinki-NLP/opus-mt-fr-en")
7
+ story_gen = gr.Interface.load("huggingface/pranavpsv/gpt2-genre-story-generator")
8
+ translator_en = gr.Interface.load("huggingface/Helsinki-NLP/opus-mt-en-fr")
9
+ examples = [["L'aventurier est approché par un mystérieux étranger, pour une nouvelle quête."]]
10
+
11
+ Series(translator_fr, story_gen, translator_en, description = description,
12
+ title = title,
13
+ examples=examples, inputs = gr.inputs.Textbox(lines = 10)).launch()