Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,10 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
-
# Charger le modèle fine-tuné
|
6 |
MODEL_NAME = "fatmata/psybot"
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
"
|
14 |
-
|
15 |
-
print(f"
|
16 |
-
|
17 |
-
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
18 |
-
|
19 |
-
with torch.no_grad():
|
20 |
-
output = model.generate(
|
21 |
-
inputs,
|
22 |
-
max_new_tokens=100,
|
23 |
-
pad_token_id=tokenizer.eos_token_id,
|
24 |
-
eos_token_id=tokenizer.eos_token_id,
|
25 |
-
do_sample=True,
|
26 |
-
temperature=0.7,
|
27 |
-
top_k=50,
|
28 |
-
top_p=0.9,
|
29 |
-
repetition_penalty=1.2
|
30 |
-
)
|
31 |
-
|
32 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
33 |
-
print(f"🔹 Réponse brute du modèle : {response}") # Debugging
|
34 |
-
|
35 |
-
if "<|bot|>" in response:
|
36 |
-
response = response.split("<|bot|>")[-1].strip()
|
37 |
-
|
38 |
-
return response
|
39 |
-
|
40 |
-
# Interface Gradio avec le bon modèle
|
41 |
-
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
42 |
-
|
43 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
|
|
|
3 |
MODEL_NAME = "fatmata/psybot"
|
|
|
|
|
4 |
|
5 |
+
try:
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
8 |
+
print("✅ Modèle chargé avec succès !")
|
9 |
+
except Exception as e:
|
10 |
+
print(f"❌ Erreur lors du chargement du modèle : {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|