Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,26 @@
|
|
1 |
-
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import
|
|
|
|
|
4 |
|
5 |
-
# Charger
|
6 |
MODEL_NAME = "fatmata/psybot"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def generate_response(user_input):
|
12 |
""" Génère une réponse du chatbot PsyBot """
|
13 |
prompt = f"<|startoftext|><|user|> {user_input} <|bot|>"
|
|
|
|
|
14 |
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
15 |
|
16 |
with torch.no_grad():
|
@@ -25,22 +35,16 @@ def generate_response(user_input):
|
|
25 |
top_p=0.9,
|
26 |
repetition_penalty=1.2
|
27 |
)
|
28 |
-
|
29 |
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
30 |
|
31 |
if "<|bot|>" in response:
|
32 |
response = response.split("<|bot|>")[-1].strip()
|
33 |
|
34 |
return response
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
outputs="text", # Champ de sortie texte
|
41 |
-
title="PsyBot - Chatbot Psychologue",
|
42 |
-
description="Posez vos questions et obtenez une réponse de PsyBot."
|
43 |
-
)
|
44 |
-
|
45 |
-
# Lancer l'application
|
46 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from pydantic import BaseModel
|
5 |
|
6 |
+
# Charger le modèle fine-tuné
|
7 |
MODEL_NAME = "fatmata/psybot"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
10 |
|
11 |
+
print("✅ Modèle et tokenizer chargés avec succès !") # Vérification du chargement
|
12 |
+
|
13 |
+
# Définir l'API avec FastAPI
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
class UserInput(BaseModel):
|
17 |
+
text: str
|
18 |
+
|
19 |
def generate_response(user_input):
|
20 |
""" Génère une réponse du chatbot PsyBot """
|
21 |
prompt = f"<|startoftext|><|user|> {user_input} <|bot|>"
|
22 |
+
print(f"🔹 Prompt envoyé au modèle : {prompt}") # Debugging
|
23 |
+
|
24 |
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
25 |
|
26 |
with torch.no_grad():
|
|
|
35 |
top_p=0.9,
|
36 |
repetition_penalty=1.2
|
37 |
)
|
38 |
+
|
39 |
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
40 |
+
print(f"🔹 Réponse brute du modèle : {response}") # Debugging
|
41 |
|
42 |
if "<|bot|>" in response:
|
43 |
response = response.split("<|bot|>")[-1].strip()
|
44 |
|
45 |
return response
|
46 |
|
47 |
+
@app.post("/generate/")
|
48 |
+
def generate(user_input: UserInput):
|
49 |
+
response = generate_response(user_input.text)
|
50 |
+
return {"response": response}
|
|
|
|
|
|
|
|
|
|
|
|
|
|