Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Charger le modèle fine-tuné | |
MODEL_NAME = "fatmata/psybot" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
print("✅ Modèle chargé avec succès :", model.config) # Debugging | |
def generate_response(user_input): | |
""" Génère une réponse du chatbot PsyBot """ | |
prompt = f"<|startoftext|><|user|> {user_input} <|bot|>" | |
print(f"🔹 Prompt envoyé au modèle : {prompt}") # Debugging | |
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
with torch.no_grad(): | |
output = model.generate( | |
inputs, | |
max_new_tokens=100, | |
pad_token_id=tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
do_sample=True, | |
temperature=0.7, | |
top_k=50, | |
top_p=0.9, | |
repetition_penalty=1.2 | |
) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
print(f"🔹 Réponse brute du modèle : {response}") # Debugging | |
if "<|bot|>" in response: | |
response = response.split("<|bot|>")[-1].strip() | |
return response | |
# Interface Gradio avec le bon modèle | |
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text") | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |