Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,27 +2,57 @@ import os
|
|
2 |
from fastapi import FastAPI
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
-
# Définir un dossier cache accessible
|
9 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
10 |
|
11 |
-
# Charger le modèle et le tokenizer
|
12 |
MODEL_NAME = "fatmata/psybot"
|
13 |
-
local_dir = "/tmp/model"
|
14 |
-
os.makedirs(local_dir, exist_ok=True)
|
15 |
|
16 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=local_dir)
|
17 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, cache_dir=local_dir, torch_dtype=torch.float32)
|
18 |
|
|
|
|
|
|
|
|
|
19 |
@app.get("/")
|
20 |
def home():
|
21 |
return {"message": "Bienvenue sur l'API PsyBot !"}
|
22 |
|
23 |
@app.post("/generate")
|
24 |
-
def generate_text(
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
return {"response": response}
|
|
|
2 |
from fastapi import FastAPI
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
+
from pydantic import BaseModel
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# 📌 Définir un dossier cache accessible
|
10 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
11 |
|
12 |
+
# 📌 Charger le modèle et le tokenizer avec cache local
|
13 |
MODEL_NAME = "fatmata/psybot"
|
14 |
+
local_dir = "/tmp/model"
|
15 |
+
os.makedirs(local_dir, exist_ok=True)
|
16 |
|
17 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=local_dir)
|
18 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, cache_dir=local_dir, torch_dtype=torch.float32)
|
19 |
|
20 |
+
# 📌 Définition du modèle pour recevoir l'entrée utilisateur
|
21 |
+
class PromptRequest(BaseModel):
|
22 |
+
prompt: str
|
23 |
+
|
24 |
@app.get("/")
|
25 |
def home():
|
26 |
return {"message": "Bienvenue sur l'API PsyBot !"}
|
27 |
|
28 |
@app.post("/generate")
|
29 |
+
def generate_text(request: PromptRequest):
|
30 |
+
""" Génère une réponse du chatbot PsyBot """
|
31 |
+
user_input = request.prompt
|
32 |
+
|
33 |
+
# 📌 Ajouter les balises pour respecter le format du modèle
|
34 |
+
formatted_prompt = f"<|startoftext|><|user|> {user_input} <|bot|>"
|
35 |
+
|
36 |
+
# 📌 Encodage du texte et génération de la réponse
|
37 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").input_ids.to(model.device)
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
output = model.generate(
|
41 |
+
inputs,
|
42 |
+
max_new_tokens=100,
|
43 |
+
pad_token_id=tokenizer.eos_token_id,
|
44 |
+
eos_token_id=tokenizer.eos_token_id,
|
45 |
+
do_sample=True, # Activation du sampling
|
46 |
+
temperature=0.7, # Génération plus naturelle
|
47 |
+
top_k=50,
|
48 |
+
top_p=0.9,
|
49 |
+
repetition_penalty=1.2 # Réduction de la répétition
|
50 |
+
)
|
51 |
+
|
52 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
53 |
+
|
54 |
+
# 🔍 Nettoyage : récupérer uniquement la réponse du bot après <|bot|>
|
55 |
+
if "<|bot|>" in response:
|
56 |
+
response = response.split("<|bot|>")[-1].strip()
|
57 |
+
|
58 |
return {"response": response}
|