File size: 24,341 Bytes
dd78d61
 
 
 
 
 
 
 
d822b20
 
dd78d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d822b20
dd78d61
 
 
 
d822b20
dd78d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import os
import json
import glob
from pathlib import Path
import torch
import streamlit as st
from dotenv import load_dotenv
from langchain_groq import ChatGroq
#from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
import numpy as np  
from sentence_transformers import util
import time

# Set device for model (CUDA if available)
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load environment variables - works for both local and Hugging Face Spaces
load_dotenv()

# Set up the clinical assistant LLM
# Try to get API key from Hugging Face Spaces secrets first, then fall back to .env file
try:
    # For Hugging Face Spaces
    from huggingface_hub.inference_api import InferenceApi
    import os
    groq_api_key = os.environ.get('GROQ_API_KEY')
    
    # If not found in environment, try to get from st.secrets (Streamlit Cloud/Spaces)
    if not groq_api_key and hasattr(st, 'secrets') and 'GROQ_API_KEY' in st.secrets:
        groq_api_key = st.secrets['GROQ_API_KEY']
        
    if not groq_api_key:
        st.warning("API Key is not set in the secrets. Using a placeholder for UI demonstration.")
        # For UI demonstration without API key
        class MockLLM:
            def invoke(self, prompt):
                return {"answer": "This is a placeholder response. Please set up your GROQ_API_KEY to get real responses."}
        llm = MockLLM()
    else:    
        llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama-3.3-70b-versatile")
        
except Exception as e:
    st.error(f"Error setting up LLM: {str(e)}")
    class MockLLM:
        def invoke(self, prompt):
            return {"answer": f"Error setting up LLM: {str(e)}. Please check your API key configuration."}
    llm = MockLLM()

# Set up embeddings for clinical context (Bio_ClinicalBERT)
embeddings = HuggingFaceEmbeddings(
    model_name="pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb",
    model_kwargs={"device": device}
)



def load_clinical_data():
    """Load both flowcharts and patient cases"""
    docs = []
    
    # Get the absolute path to the current script
    current_dir = os.path.dirname(os.path.abspath(__file__))
    
    # Try to handle potential errors with file loading
    try:
        # Load diagnosis flowcharts
        flowchart_dir = os.path.join(current_dir, "Diagnosis_flowchart")
        if os.path.exists(flowchart_dir):
            for fpath in glob.glob(os.path.join(flowchart_dir, "*.json")):
                try:
                    with open(fpath, 'r', encoding='utf-8') as f:
                        data = json.load(f)
                        content = f"""
                        DIAGNOSTIC FLOWCHART: {Path(fpath).stem}
                        Diagnostic Path: {data.get('diagnostic', 'N/A')}
                        Key Criteria: {data.get('knowledge', 'N/A')}
                        """
                        docs.append(Document(
                            page_content=content,
                            metadata={"source": fpath, "type": "flowchart"}
                        ))
                except Exception as e:
                    st.warning(f"Error loading flowchart file {fpath}: {str(e)}")
        else:
            st.warning(f"Flowchart directory not found at {flowchart_dir}")

        # Load patient cases
        finished_dir = os.path.join(current_dir, "Finished")
        if os.path.exists(finished_dir):
            for category_dir in glob.glob(os.path.join(finished_dir, "*")):
                if os.path.isdir(category_dir):
                    for case_file in glob.glob(os.path.join(category_dir, "*.json")):
                        try:
                            with open(case_file, 'r', encoding='utf-8') as f:
                                case_data = json.load(f)
                                notes = "\n".join(
                                    f"{k}: {v}" for k, v in case_data.items() if k.startswith("input")
                                )
                                docs.append(Document(
                                    page_content=f"""
                                    PATIENT CASE: {Path(case_file).stem}
                                    Category: {Path(category_dir).name}
                                    Notes: {notes}
                                    """,
                                    metadata={"source": case_file, "type": "patient_case"}
                                ))
                        except Exception as e:
                            st.warning(f"Error loading case file {case_file}: {str(e)}")
        else:
            st.warning(f"Finished directory not found at {finished_dir}")
            
        # If no documents were loaded, add a sample document for testing
        if not docs:
            st.warning("No clinical data files found. Using sample data for demonstration.")
            docs.append(Document(
                page_content="""SAMPLE CLINICAL DATA: This is sample data for demonstration purposes.
                This application requires clinical data files to be present in the correct directories.
                Please ensure the Diagnosis_flowchart and Finished directories exist with proper JSON files.""",
                metadata={"source": "sample", "type": "sample"}
            ))
    except Exception as e:
        st.error(f"Error loading clinical data: {str(e)}")
        # Add a fallback document
        docs.append(Document(
            page_content="Error loading clinical data. This is a fallback document for demonstration purposes.",
            metadata={"source": "error", "type": "error"}
        ))
    return docs

def build_vectorstore():
    """Build and return the vectorstore using FAISS"""
    documents = load_clinical_data()
    splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    splits = splitter.split_documents(documents)
    vectorstore = FAISS.from_documents(splits, embeddings)
    return vectorstore

# Path for saving/loading the vectorstore
def get_vectorstore_path():
    """Get the path for saving/loading the vectorstore"""
    current_dir = os.path.dirname(os.path.abspath(__file__))
    return os.path.join(current_dir, "vectorstore")

# Initialize vectorstore with disk persistence
@st.cache_resource(show_spinner="Loading clinical knowledge base...")
def get_vectorstore():
    """Get or create the vectorstore with disk persistence"""
    vectorstore_path = get_vectorstore_path()
    
    # Try to load from disk first
    try:
        if os.path.exists(vectorstore_path):
            st.info("Loading vectorstore from disk...")
            # Set allow_dangerous_deserialization to True since we trust our own vectorstore files
            return FAISS.load_local(vectorstore_path, embeddings, allow_dangerous_deserialization=True)
    except Exception as e:
        st.warning(f"Could not load vectorstore from disk: {str(e)}. Building new vectorstore.")
    
    # If loading fails or doesn't exist, build a new one
    st.info("Building new vectorstore...")
    vectorstore = build_vectorstore()
    
    # Save to disk for future use
    try:
        os.makedirs(vectorstore_path, exist_ok=True)
        vectorstore.save_local(vectorstore_path)
        st.success("Vectorstore saved to disk for future use")
    except Exception as e:
        st.warning(f"Could not save vectorstore to disk: {str(e)}")
    
    return vectorstore

def run_rag_chat(query, vectorstore):
    """Run the Retrieval-Augmented Generation (RAG) for clinical questions"""
    try:
        retriever = vectorstore.as_retriever()

        prompt_template = ChatPromptTemplate.from_template("""
        You are a clinical assistant AI. Based on the following clinical context, provide a reasoned and medically sound answer to the question.

        <context>
        {context}
        </context>

        Question: {input}

        Answer:
        """)

        retrieved_docs = retriever.invoke(query, k=3)
        retrieved_context = "\n".join([doc.page_content for doc in retrieved_docs])

        # Create document chain first
        document_chain = create_stuff_documents_chain(llm, prompt_template)
        
        # Then create retrieval chain
        chain = create_retrieval_chain(retriever, document_chain)

        # Invoke the chain
        response = chain.invoke({"input": query})
        
        # Add retrieved documents to response for transparency
        response["context"] = retrieved_docs
        
        return response
    except Exception as e:
        st.error(f"Error in RAG processing: {str(e)}")
        # Return a fallback response
        return {
            "answer": f"I encountered an error processing your query: {str(e)}",
            "context": [],
            "input": query
        }

def calculate_hit_rate(retriever, query, expected_docs, k=3):
    """Calculate the hit rate for top-k retrieved documents"""
    retrieved_docs = retriever.get_relevant_documents(query, k=k)
    retrieved_contents = [doc.page_content for doc in retrieved_docs]
    
    hits = 0
    for expected in expected_docs:
        if any(expected in retrieved for retrieved in retrieved_contents):
            hits += 1
    
    return hits / len(expected_docs) if expected_docs else 0.0

def evaluate_rag_response(response, embeddings):
    """Evaluate the RAG response for faithfulness and hit rate"""
    scores = {}

    # Faithfulness: Answer-Context Similarity
    answer_embed = embeddings.embed_query(response["answer"])
    context_embeds = [embeddings.embed_query(doc.page_content) for doc in response["context"]]
    similarities = [util.cos_sim(answer_embed, ctx_embed).item() for ctx_embed in context_embeds]
    scores["faithfulness"] = float(np.mean(similarities)) if similarities else 0.0

    # Custom Hit Rate Calculation
    retriever = response["retriever"]
    scores["hit_rate"] = calculate_hit_rate(
        retriever,
        query=response["input"],
        expected_docs=[doc.page_content for doc in response["context"]],
        k=3
    )
    
    return scores

def main():
    """Main function to run the Streamlit app"""
    # Set page configuration
    st.set_page_config(
        page_title="DiReCT - Clinical Diagnostic Assistant",
        page_icon="🩺",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    
    # Load vectorstore only once using session state
    if 'vectorstore' not in st.session_state:
        with st.spinner("Loading clinical knowledge base... This may take a minute."):
            try:
                st.session_state.vectorstore = get_vectorstore()
                # Use custom styled message without the success icon
                st.markdown("<div style='padding:10px 15px;background-color:rgba(40,167,69,0.2);border-radius:5px;border-left:5px solid rgba(40,167,69,0.8);'>Clinical knowledge base loaded successfully!</div>", unsafe_allow_html=True)
            except Exception as e:
                st.error(f"Error loading knowledge base: {str(e)}")
                st.session_state.vectorstore = None

    # Custom CSS for modern look with dark theme compatibility
    st.markdown("""
    <style>
    .stApp {max-width: 1200px; margin: 0 auto;}
    .css-18e3th9 {padding-top: 2rem;}
    .stButton>button {background-color: #3498db; color: white;}
    .stButton>button:hover {background-color: #2980b9;}
    .chat-message {border-radius: 10px; padding: 10px; margin-bottom: 10px;}
    .chat-message-user {background-color: rgba(52, 152, 219, 0.2); color: inherit;}
    .chat-message-assistant {background-color: rgba(240, 240, 240, 0.2); color: inherit;}
    .source-box {background-color: rgba(255, 255, 255, 0.1); color: inherit; border-radius: 5px; padding: 15px; margin-bottom: 10px; border-left: 5px solid #3498db;}
    .metrics-box {background-color: rgba(255, 255, 255, 0.1); color: inherit; border-radius: 5px; padding: 15px; margin-top: 20px;}
    .features-container {display: flex; flex-wrap: wrap; gap: 20px; justify-content: center; margin-top: 30px;}
    .feature-item {flex: 1 1 calc(50% - 20px); min-width: 300px; display: flex; align-items: center; padding: 20px; border-radius: 10px; background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2)); transition: transform 0.3s, box-shadow 0.3s; border: 1px solid rgba(255, 255, 255, 0.1);}
    .feature-item:hover {transform: translateY(-5px); box-shadow: 0 10px 20px rgba(0, 0, 0, 0.1);}
    .feature-icon {width: 60px; height: 60px; border-radius: 50%; background: linear-gradient(135deg, #3498db, #2980b9); display: flex; align-items: center; justify-content: center; margin-right: 20px; box-shadow: 0 5px 15px rgba(52, 152, 219, 0.3);}
    .feature-icon i {font-size: 24px; color: white;}
    .feature-content {flex: 1;}
    .feature-content h3 {margin-top: 0; margin-bottom: 10px; color: inherit;}
    .feature-content p {margin: 0; font-size: 0.9em; color: inherit; opacity: 0.8;}
    .input-container {margin-bottom: 20px; padding: 15px; border-radius: 10px; background-color: rgba(255, 255, 255, 0.05); border: 1px solid rgba(255, 255, 255, 0.1);}
    </style>
    """, unsafe_allow_html=True)

    # App states
    if 'chat_history' not in st.session_state:
        st.session_state.chat_history = []
    if 'page' not in st.session_state:
        st.session_state.page = 'cover'

    # Sidebar
    with st.sidebar:
        st.image("https://img.icons8.com/color/96/000000/caduceus.png", width=80)
        st.title("DiReCT")
        st.markdown("### Diagnostic Reasoning for Clinical Text")
        st.markdown("---")
        
        if st.button("Home", key="home_btn"):
            st.session_state.page = 'cover'
        if st.button("Diagnostic Assistant", key="assistant_btn"):
            st.session_state.page = 'chat'
        if st.button("About", key="about_btn"):
            st.session_state.page = 'about'
            
        st.markdown("---")
        st.markdown("### Model Information")
        st.markdown("**Embedding Model:** Bio_ClinicalBERT")
        st.markdown("**LLM:** Llama-3.3-70B")
        st.markdown("**Vector Store:** FAISS")

    # Cover page
    if st.session_state.page == 'cover':
        # Hero section with animation
        col1, col2 = st.columns([2, 1])
        with col1:
            st.markdown("<h1 style='font-size:3.5em;'>DiReCT</h1>", unsafe_allow_html=True)
            st.markdown("<h2 style='font-size:1.8em;color:#3498db;'>Diagnostic Reasoning for Clinical Text</h2>", unsafe_allow_html=True)
            st.markdown("""<p style='font-size:1.2em;'>A powerful RAG-based clinical diagnostic assistant that leverages the MIMIC-IV-Ext dataset to provide accurate medical insights and diagnostic reasoning.</p>""", unsafe_allow_html=True)
            
            st.markdown("""<br>""", unsafe_allow_html=True)
            if st.button("Get Started", key="get_started"):
                st.session_state.page = 'chat'
                st.rerun()
        
        with col2:
            # Animated medical icon
            st.markdown("""
            <div style='display:flex;justify-content:center;align-items:center;height:100%;'>
                <img src="https://img.icons8.com/color/240/000000/healthcare-and-medical.png" style='max-width:90%;'>
            </div>
            """, unsafe_allow_html=True)
        
        # Modern Features section with Streamlit native components
        st.markdown("<br><br>", unsafe_allow_html=True)
        st.markdown("<h2 style='text-align:center;'>Key Features</h2>", unsafe_allow_html=True)
        
        # Create a 2x2 grid for features using Streamlit columns
        col1, col2 = st.columns(2)
        
        # Feature 1
        with col1:
            st.markdown("""
            <div style="background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2)); 
                        padding: 20px; border-radius: 10px; height: 100%; 
                        border: 1px solid rgba(255, 255, 255, 0.1); margin-bottom: 20px;">
                <h3>πŸ” Intelligent Retrieval</h3>
                <p>Finds the most relevant clinical information from the MIMIC-IV-Ext dataset</p>
            </div>
            """, unsafe_allow_html=True)
        
        # Feature 2
        with col2:
            st.markdown("""
            <div style="background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2)); 
                        padding: 20px; border-radius: 10px; height: 100%; 
                        border: 1px solid rgba(255, 255, 255, 0.1); margin-bottom: 20px;">
                <h3>🧠 Advanced Reasoning</h3>
                <p>Applies clinical knowledge to generate accurate diagnostic insights</p>
            </div>
            """, unsafe_allow_html=True)
        
        # Feature 3
        with col1:
            st.markdown("""
            <div style="background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2)); 
                        padding: 20px; border-radius: 10px; height: 100%; 
                        border: 1px solid rgba(255, 255, 255, 0.1);">
                <h3>πŸ“„ Source Transparency</h3>
                <p>Provides references to all clinical sources used in generating responses</p>
            </div>
            """, unsafe_allow_html=True)
        
        # Feature 4
        with col2:
            st.markdown("""
            <div style="background: linear-gradient(135deg, rgba(72, 126, 176, 0.1), rgba(72, 126, 176, 0.2)); 
                        padding: 20px; border-radius: 10px; height: 100%; 
                        border: 1px solid rgba(255, 255, 255, 0.1);">
                <h3>πŸŒ“ Dark/Light Theme Compatible</h3>
                <p>Optimized interface that works seamlessly in both dark and light themes</p>
            </div>
            """, unsafe_allow_html=True)

    # Chat interface
    elif st.session_state.page == 'chat':
        # Initialize session state for input if not exists
        if 'user_input' not in st.session_state:
            st.session_state.user_input = ""
        
        # Header with clear button
        col1, col2 = st.columns([3, 1])
        with col1:
            st.markdown("<h1>Clinical Diagnostic Assistant</h1>", unsafe_allow_html=True)
        with col2:
            # Add a clear button in the header
            if st.button("πŸ—‘οΈ Clear Chat"):
                st.session_state.chat_history = []
                st.session_state.user_input = ""
                st.rerun()
        
        st.markdown("Ask any clinical diagnostic question and get insights based on medical knowledge and patient cases.")
        
        # Fixed input area at the top
        with st.container():
            st.markdown("<div class='input-container'>", unsafe_allow_html=True)
            user_input = st.text_area("Ask a clinical question:", st.session_state.user_input, height=100, key="question_input")
            col1, col2 = st.columns([1, 5])
            with col1:
                submit_button = st.button("Submit")
            st.markdown("</div>", unsafe_allow_html=True)
        
        # Create a container for chat history
        chat_container = st.container()
        
        # Process query
        if submit_button and user_input:
            if st.session_state.vectorstore is None:
                st.error("Knowledge base not loaded. Please refresh the page and try again.")
            else:
                with st.spinner("Analyzing clinical data..."):
                    try:
                        # Add a small delay for UX
                        time.sleep(0.5)
                        
                        # Run RAG
                        response = run_rag_chat(user_input, st.session_state.vectorstore)
                        response["retriever"] = st.session_state.vectorstore.as_retriever()
                        
                        # Clear previous chat history and only keep the current response
                        st.session_state.chat_history = [(user_input, response)]
                        
                        # Clear the input field
                        st.session_state.user_input = ""
                        
                        # Rerun to update UI
                        st.rerun()
                    except Exception as e:
                        st.error(f"Error processing query: {str(e)}")
        
        # Display chat history in the container
        with chat_container:
            for i, (query, response) in enumerate(st.session_state.chat_history):
                st.markdown(f"<div class='chat-message chat-message-user'><b>πŸ§‘β€βš•οΈ You:</b> {query}</div>", unsafe_allow_html=True)
                
                st.markdown(f"<div class='chat-message chat-message-assistant'><b>🩺 DiReCT:</b> {response['answer']}</div>", unsafe_allow_html=True)
                
                with st.expander("View Sources"):
                    for doc in response["context"]:
                        st.markdown(f"<div class='source-box'>"
                                  f"<b>Source:</b> {Path(doc.metadata['source']).stem}<br>"
                                  f"<b>Type:</b> {doc.metadata['type']}<br>"
                                  f"<b>Content:</b> {doc.page_content[:300]}...</div>", 
                                  unsafe_allow_html=True)
                
                # Show evaluation metrics if available
                try:
                    eval_scores = evaluate_rag_response(response, embeddings)
                    with st.expander("View Evaluation Metrics"):
                        col1, col2 = st.columns(2)
                        with col1:
                            st.metric("Hit Rate (Top-3)", f"{eval_scores['hit_rate']:.2f}")
                        with col2:
                            st.metric("Faithfulness", f"{eval_scores['faithfulness']:.2f}")
                except Exception as e:
                    st.warning(f"Evaluation metrics unavailable: {str(e)}")
    
    # About page
    elif st.session_state.page == 'about':
        st.markdown("<h1>About DiReCT</h1>", unsafe_allow_html=True)
        
        st.markdown("""
        ### Project Overview
        
        DiReCT (Diagnostic Reasoning for Clinical Text) is a Retrieval-Augmented Generation (RAG) system designed to assist medical professionals with diagnostic reasoning based on clinical notes and medical knowledge.
        
        ### Data Sources
        
        This application uses the MIMIC-IV-Ext dataset, which contains de-identified clinical notes and medical records. The system processes:
        
        - Diagnostic flowcharts
        - Patient cases
        - Clinical guidelines
        
        ### Technical Implementation
        
        - **Embedding Model**: Bio_ClinicalBERT for domain-specific text understanding
        - **Vector Database**: FAISS for efficient similarity search
        - **LLM**: Llama-3.3-70B for generating medically accurate responses
        - **Framework**: Built with LangChain and Streamlit
        
        ### Evaluation Metrics
        
        The system evaluates responses using:
        
        - **Hit Rate**: Measures how many relevant documents were retrieved
        - **Faithfulness**: Measures how well the response aligns with the retrieved context
        
        ### Ethical Considerations
        
        This system is designed as a clinical decision support tool and not as a replacement for professional medical judgment. All patient data used has been properly de-identified in compliance with healthcare privacy regulations.
        """)
        
        st.markdown("<br>", unsafe_allow_html=True)
        st.markdown("### Developers")
        st.markdown("This project was developed as part of an academic assignment on RAG systems for clinical applications.")

if __name__ == "__main__":
    main()