File size: 4,375 Bytes
53b9cff
 
 
 
1b654d3
53b9cff
1b654d3
53b9cff
 
 
1dd46a8
1b654d3
53b9cff
 
 
1b654d3
 
8613a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b654d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec7fdae
53b9cff
1b654d3
 
 
 
 
 
 
 
 
 
 
 
 
1dd46a8
 
 
 
 
 
1b654d3
d970b7c
1b654d3
 
 
 
 
1dd46a8
1b654d3
 
 
 
 
1dd46a8
1b654d3
 
 
 
 
 
 
 
 
 
 
 
 
1dd46a8
 
 
 
 
 
 
 
1b654d3
1dd46a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import json
import logging
import os
from pathlib import Path

import anthropic
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from elevenlabs import ElevenLabs
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import AdditionalOutputs, ReplyOnPause, Stream, get_twilio_turn_credentials
from fastrtc.utils import aggregate_bytes_to_16bit, audio_to_bytes
from gradio.utils import get_space
from groq import Groq
from pydantic import BaseModel

# Configure the root logger to WARNING to suppress debug messages from other libraries
logging.basicConfig(level=logging.WARNING)

# Create a console handler
console_handler = logging.FileHandler("gradio_webrtc.log")
console_handler.setLevel(logging.DEBUG)

# Create a formatter
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)

# Configure the logger for your specific library
logger = logging.getLogger("fastrtc")
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)


load_dotenv()

groq_client = Groq()
claude_client = anthropic.Anthropic()
tts_client = ElevenLabs(api_key=os.environ["ELEVENLABS_API_KEY"])

curr_dir = Path(__file__).parent


def response(
    audio: tuple[int, np.ndarray],
    chatbot: list[dict] | None = None,
):
    chatbot = chatbot or []
    messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
    prompt = groq_client.audio.transcriptions.create(
        file=("audio-file.mp3", audio_to_bytes(audio)),
        model="whisper-large-v3-turbo",
        response_format="verbose_json",
    ).text
    print("prompt", prompt)
    chatbot.append({"role": "user", "content": prompt})
    messages.append({"role": "user", "content": prompt})
    response = claude_client.messages.create(
        model="claude-3-5-haiku-20241022",
        max_tokens=512,
        messages=messages,  # type: ignore
    )
    response_text = " ".join(
        block.text  # type: ignore
        for block in response.content
        if getattr(block, "type", None) == "text"
    )
    chatbot.append({"role": "assistant", "content": response_text})
    yield AdditionalOutputs(chatbot)
    iterator = tts_client.text_to_speech.convert_as_stream(
        text=response_text,
        voice_id="JBFqnCBsd6RMkjVDRZzb",
        model_id="eleven_multilingual_v2",
        output_format="pcm_24000",
    )
    for chunk in aggregate_bytes_to_16bit(iterator):
        audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1)
        yield (24000, audio_array, "mono")


chatbot = gr.Chatbot(type="messages")
stream = Stream(
    modality="audio",
    mode="send-receive",
    handler=ReplyOnPause(response),
    additional_outputs_handler=lambda a, b: b,
    additional_inputs=[chatbot],
    additional_outputs=[chatbot],
    rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
    concurrency_limit=20 if get_space() else None,
)


class Message(BaseModel):
    role: str
    content: str


class InputData(BaseModel):
    webrtc_id: str
    chatbot: list[Message]


app = FastAPI()

stream.mount(app)


@app.get("/")
async def _():
    rtc_config = get_twilio_turn_credentials() if get_space() else None
    html_content = (curr_dir / "index.html").read_text()
    html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
    return HTMLResponse(content=html_content, status_code=200)


@app.post("/input_hook")
async def _(body: InputData):
    stream.set_input(body.webrtc_id, body.model_dump()["chatbot"])
    return {"status": "ok"}


@app.get("/outputs")
def _(webrtc_id: str):
    print("outputs", webrtc_id)

    async def output_stream():
        async for output in stream.output_stream(webrtc_id):
            chatbot = output.args[0]
            yield f"event: output\ndata: {json.dumps(chatbot[-2])}\n\n"
            yield f"event: output\ndata: {json.dumps(chatbot[-1])}\n\n"

    return StreamingResponse(output_stream(), media_type="text/event-stream")


if __name__ == "__main__":
    import os

    if (mode := os.getenv("MODE")) == "UI":
        stream.ui.launch(server_port=7860, server_name="0.0.0.0")
    elif mode == "PHONE":
        stream.fastphone(host="0.0.0.0", port=7860)
    else:
        import uvicorn

        uvicorn.run(app, host="0.0.0.0", port=7860)