farwew commited on
Commit
db03642
·
verified ·
1 Parent(s): a5f21ee

Upload 3 files

Browse files
Files changed (2) hide show
  1. app.py +1 -66
  2. requirement.txt +0 -5
app.py CHANGED
@@ -1,67 +1,3 @@
1
- <<<<<<< HEAD
2
- import streamlit as st
3
- import tensorflow as tf
4
- from tensorflow.keras.preprocessing.image import load_img, img_to_array
5
- import numpy as np
6
- from PIL import Image
7
- import io
8
-
9
- st.set_page_config(
10
- page_title="Waste Classifier",
11
- layout="centered"
12
- )
13
-
14
- @st.cache_resource
15
- def load_model():
16
- return tf.keras.models.load_model('CNN_Prak4_ML.h5')
17
-
18
- def preprocess_image(img):
19
- img = img.resize((244, 244))
20
- img = img_to_array(img)
21
- img = np.expand_dims(img, axis=0)
22
- img = img / 255.0
23
- return img
24
-
25
- LABEL_CLASS = {
26
- 0: "Cardboard",
27
- 1: "Glass",
28
- 2: "Metal",
29
- 3: "Paper",
30
- 4: "Textile Trash",
31
- 5: "Vegetation"
32
- }
33
-
34
-
35
- def main():
36
- st.title("Waste Classifier")
37
- st.write("Upload an image and the model will predict whether it's a chihuahua or a muffin!")
38
-
39
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
40
-
41
- if uploaded_file is not None:
42
- image = Image.open(uploaded_file)
43
- st.image(image, caption='Uploaded Image', use_column_width=True)
44
-
45
- if st.button('Predict'):
46
- model = load_model()
47
-
48
- processed_image = preprocess_image(image)
49
-
50
- with st.spinner('Predicting...'):
51
- prediction = model.predict(processed_image)
52
- pred_class = LABEL_CLASS[np.argmax(prediction)]
53
- confidence = float(prediction.max()) * 100
54
-
55
- st.success(f'Prediction: {pred_class.upper()}')
56
- st.info(f'Confidence: {confidence:.2f}%')
57
-
58
- st.write("Class Probabilities:")
59
- for i, prob in enumerate(prediction[0]):
60
- st.progress(float(prob))
61
- st.write(f"{LABEL_CLASS[i]}: {float(prob)*100:.2f}%")
62
-
63
- if __name__ == "__main__":
64
- =======
65
  import streamlit as st
66
  import tensorflow as tf
67
  from tensorflow.keras.preprocessing.image import load_img, img_to_array
@@ -97,7 +33,7 @@ LABEL_CLASS = {
97
 
98
  def main():
99
  st.title("Waste Classifier")
100
- st.write("Upload an image and the model will predict whether it's a chihuahua or a muffin!")
101
 
102
  uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
103
 
@@ -124,5 +60,4 @@ def main():
124
  st.write(f"{LABEL_CLASS[i]}: {float(prob)*100:.2f}%")
125
 
126
  if __name__ == "__main__":
127
- >>>>>>> 9014ce89a3d5b013b1a3e93a65c21b8e932a0117
128
  main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import tensorflow as tf
3
  from tensorflow.keras.preprocessing.image import load_img, img_to_array
 
33
 
34
  def main():
35
  st.title("Waste Classifier")
36
+ st.write("Upload an image and the model will predict waste image")
37
 
38
  uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
39
 
 
60
  st.write(f"{LABEL_CLASS[i]}: {float(prob)*100:.2f}%")
61
 
62
  if __name__ == "__main__":
 
63
  main()
requirement.txt CHANGED
@@ -1,8 +1,3 @@
1
- <<<<<<< HEAD
2
  pillow==10.4.0
3
  streamlit==1.39.0
4
- =======
5
- pillow==10.4.0
6
- streamlit==1.39.0
7
- >>>>>>> 9014ce89a3d5b013b1a3e93a65c21b8e932a0117
8
  tensorflow==2.18.0
 
 
1
  pillow==10.4.0
2
  streamlit==1.39.0
 
 
 
 
3
  tensorflow==2.18.0