farmax commited on
Commit
e53b00b
·
verified ·
1 Parent(s): a0d9c6a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -47,7 +47,7 @@ def initialize_database(document, chunk_size, chunk_overlap, progress=gr.Progres
47
  docs = loader.load()
48
  except ImportError:
49
  logger.error("Impossibile caricare il documento PDF. Assicurati di aver installato 'unstructured' o 'pypdf'.")
50
- return None, "Errore: Pacchetti necessari non installati. Esegui 'pip install unstructured pypdf' e riprova."
51
 
52
  for doc in docs:
53
  text_chunks = splitter.split_text(doc.page_content)
@@ -55,14 +55,13 @@ def initialize_database(document, chunk_size, chunk_overlap, progress=gr.Progres
55
  documents.append(Document(page_content=chunk, metadata={"filename": file.name, "page": doc.metadata.get("page", 0)}))
56
 
57
  if not documents:
58
- return None, "Errore: Nessun documento caricato correttamente."
59
 
60
  vectorstore = Chroma.from_documents(documents, embedding_function)
61
  progress.update(0.5)
62
  logger.info("Database initialized successfully.")
63
- return vectorstore, "Initialized"
64
 
65
-
66
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress(), language="italian"):
67
  logger.info("Initializing LLM chain...")
68
  llm_name = list_llm[llm_option]
@@ -131,7 +130,6 @@ def conversation(qa_chain, message, history, language):
131
 
132
  def demo():
133
  with gr.Blocks(theme="base") as demo:
134
-
135
  vector_db = gr.State()
136
  qa_chain = gr.State()
137
  collection_name = gr.State()
 
47
  docs = loader.load()
48
  except ImportError:
49
  logger.error("Impossibile caricare il documento PDF. Assicurati di aver installato 'unstructured' o 'pypdf'.")
50
+ return None, None, "Errore: Pacchetti necessari non installati. Esegui 'pip install unstructured pypdf' e riprova."
51
 
52
  for doc in docs:
53
  text_chunks = splitter.split_text(doc.page_content)
 
55
  documents.append(Document(page_content=chunk, metadata={"filename": file.name, "page": doc.metadata.get("page", 0)}))
56
 
57
  if not documents:
58
+ return None, None, "Errore: Nessun documento caricato correttamente."
59
 
60
  vectorstore = Chroma.from_documents(documents, embedding_function)
61
  progress.update(0.5)
62
  logger.info("Database initialized successfully.")
63
+ return vectorstore, None, "Initialized" # Aggiunto None come secondo output
64
 
 
65
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress(), language="italian"):
66
  logger.info("Initializing LLM chain...")
67
  llm_name = list_llm[llm_option]
 
130
 
131
  def demo():
132
  with gr.Blocks(theme="base") as demo:
 
133
  vector_db = gr.State()
134
  qa_chain = gr.State()
135
  collection_name = gr.State()