Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -64,28 +64,11 @@ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, pr
|
|
64 |
logger.info("Initializing LLM chain...")
|
65 |
|
66 |
# Define the default LLMS based on the language
|
67 |
-
if language == "
|
68 |
default_llm = "google/gemma-7b-it"
|
69 |
else:
|
70 |
default_llm = "google/gemma-7b" # English version
|
71 |
|
72 |
-
# Try to load the tokenizer and model with authentication
|
73 |
-
try:
|
74 |
-
# Option 1: Using HF_TOKEN environment variable
|
75 |
-
hf_token = os.getenv("HF_TOKEN")
|
76 |
-
if not hf_token:
|
77 |
-
raise ValueError("HF_TOKEN environment variable is not set")
|
78 |
-
|
79 |
-
tokenizer = AutoTokenizer.from_pretrained(default_llm, token=hf_token)
|
80 |
-
model = AutoModelForCausalLM.from_pretrained(default_llm, token=hf_token)
|
81 |
-
except Exception as e:
|
82 |
-
logger.error(f"Error initializing LLM: {e}")
|
83 |
-
return None, "Failed to initialize LLM"
|
84 |
-
|
85 |
-
# Resize token embeddings if needed
|
86 |
-
if len(tokenizer) > model.config.max_position_embeddings:
|
87 |
-
model.resize_token_embeddings(len(tokenizer))
|
88 |
-
|
89 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
90 |
llm=model,
|
91 |
retriever=vector_db.as_retriever(),
|
|
|
64 |
logger.info("Initializing LLM chain...")
|
65 |
|
66 |
# Define the default LLMS based on the language
|
67 |
+
if language == "italian":
|
68 |
default_llm = "google/gemma-7b-it"
|
69 |
else:
|
70 |
default_llm = "google/gemma-7b" # English version
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
73 |
llm=model,
|
74 |
retriever=vector_db.as_retriever(),
|