farmax commited on
Commit
d20e6e3
·
verified ·
1 Parent(s): a7ce1c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -18
app.py CHANGED
@@ -64,28 +64,11 @@ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, pr
64
  logger.info("Initializing LLM chain...")
65
 
66
  # Define the default LLMS based on the language
67
- if language == "italiano":
68
  default_llm = "google/gemma-7b-it"
69
  else:
70
  default_llm = "google/gemma-7b" # English version
71
 
72
- # Try to load the tokenizer and model with authentication
73
- try:
74
- # Option 1: Using HF_TOKEN environment variable
75
- hf_token = os.getenv("HF_TOKEN")
76
- if not hf_token:
77
- raise ValueError("HF_TOKEN environment variable is not set")
78
-
79
- tokenizer = AutoTokenizer.from_pretrained(default_llm, token=hf_token)
80
- model = AutoModelForCausalLM.from_pretrained(default_llm, token=hf_token)
81
- except Exception as e:
82
- logger.error(f"Error initializing LLM: {e}")
83
- return None, "Failed to initialize LLM"
84
-
85
- # Resize token embeddings if needed
86
- if len(tokenizer) > model.config.max_position_embeddings:
87
- model.resize_token_embeddings(len(tokenizer))
88
-
89
  qa_chain = ConversationalRetrievalChain.from_llm(
90
  llm=model,
91
  retriever=vector_db.as_retriever(),
 
64
  logger.info("Initializing LLM chain...")
65
 
66
  # Define the default LLMS based on the language
67
+ if language == "italian":
68
  default_llm = "google/gemma-7b-it"
69
  else:
70
  default_llm = "google/gemma-7b" # English version
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  qa_chain = ConversationalRetrievalChain.from_llm(
73
  llm=model,
74
  retriever=vector_db.as_retriever(),