farmax commited on
Commit
a23ee22
·
verified ·
1 Parent(s): 7c47d3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -10
app.py CHANGED
@@ -2,8 +2,8 @@ from langchain_huggingface import HuggingFaceEmbeddings
2
  import gradio as gr
3
  import os
4
  from googletrans import Translator
5
- import requests
6
- from dotenv import load_dotenv
7
  # import numpy as np
8
  from langchain_community.vectorstores import Chroma
9
  from langchain_community.document_loaders import UnstructuredPDFLoader, PyPDFLoader
@@ -18,7 +18,7 @@ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
18
  from langchain.llms.base import LLM
19
  from typing import List, Dict, Any, Optional
20
  from pydantic import BaseModel
21
- from tqdm import tqdm
22
  import torch
23
  import logging
24
 
@@ -78,17 +78,11 @@ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, pr
78
  print(f"Using default LLM {default_llm} for {language}")
79
  llm_name = default_llm
80
 
81
- memory = ConversationBufferMemory(
82
- memory_key="chat_history",
83
- output_key='answer',
84
- return_messages=True
85
- )
86
-
87
  qa_chain = ConversationalRetrievalChain.from_llm(
88
  llm=llm_name,
89
  retriever=vector_db.as_retriever(),
90
  chain_type="stuff",
91
- memory=memory,
92
  return_source_documents=True,
93
  temperature=llm_temperature,
94
  verbose=False,
 
2
  import gradio as gr
3
  import os
4
  from googletrans import Translator
5
+ # import requests
6
+ # from dotenv import load_dotenv
7
  # import numpy as np
8
  from langchain_community.vectorstores import Chroma
9
  from langchain_community.document_loaders import UnstructuredPDFLoader, PyPDFLoader
 
18
  from langchain.llms.base import LLM
19
  from typing import List, Dict, Any, Optional
20
  from pydantic import BaseModel
21
+ # from tqdm import tqdm
22
  import torch
23
  import logging
24
 
 
78
  print(f"Using default LLM {default_llm} for {language}")
79
  llm_name = default_llm
80
 
 
 
 
 
 
 
81
  qa_chain = ConversationalRetrievalChain.from_llm(
82
  llm=llm_name,
83
  retriever=vector_db.as_retriever(),
84
  chain_type="stuff",
85
+ # memory=memory,
86
  return_source_documents=True,
87
  temperature=llm_temperature,
88
  verbose=False,