farmax commited on
Commit
86cd10f
·
verified ·
1 Parent(s): caaf91d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +263 -137
app.py CHANGED
@@ -1,179 +1,304 @@
1
- from langchain_huggingface import HuggingFaceEmbeddings
2
  import gradio as gr
3
  import os
4
- from googletrans import Translator
 
 
5
  from langchain_community.vectorstores import Chroma
6
- from langchain_community.document_loaders import UnstructuredPDFLoader, PyPDFLoader
7
- from langchain.text_splitter import CharacterTextSplitter
8
  from langchain.chains import ConversationalRetrievalChain
9
- from langchain.schema import Document
 
 
10
  from langchain.memory import ConversationBufferMemory
11
- from langchain.callbacks.manager import CallbackManager
12
- from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
13
- from langchain.llms.base import LLM
14
- from typing import List, Dict, Any, Optional
15
- from pydantic import BaseModel
16
- from langchain.llms.base import LLM
17
- from transformers import AutoTokenizer, AutoModelForCausalLM
 
18
  import torch
19
- import logging
 
 
20
 
21
- # Configurazione del logging
22
- logging.basicConfig(level=logging.INFO)
23
- logger = logging.getLogger(__name__)
24
 
25
- # Aggiornamento dell'inizializzazione di HuggingFaceEmbeddings
26
- embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
27
 
28
- # Definizione della lista di modelli LLM
29
- list_llm_simple = ["meta/llama-7b-hf", "meta/llama-7b-hf"]
30
- list_llm = ["meta/llama-7b-hf", "meta/llama-7b-hf"]
 
 
 
 
 
 
31
 
32
- def initialize_database(document, chunk_size, chunk_overlap, progress=gr.Progress()):
33
- logger.info("Initializing database...")
34
- documents = []
35
- splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
36
-
37
- for file in document:
38
- try:
39
- loader = UnstructuredPDFLoader(file.name)
40
- docs = loader.load()
41
- except ImportError:
42
- logger.warning("UnstructuredPDFLoader non disponibile. Tentativo di utilizzo di PyPDFLoader.")
43
- try:
44
- loader = PyPDFLoader(file.name)
45
- docs = loader.load()
46
- except ImportError:
47
- logger.error("Impossibile caricare il documento PDF. Assicurati di aver installato 'unstructured' o 'pypdf'.")
48
- return None, None, "Errore: Pacchetti necessari non installati. Esegui 'pip install unstructured pypdf' e riprova."
49
-
50
- for doc in docs:
51
- text_chunks = splitter.split_text(doc.page_content)
52
- for chunk in text_chunks:
53
- documents.append(Document(page_content=chunk, metadata={"filename": file.name, "page": doc.metadata.get("page", 0)}))
54
-
55
- if not documents:
56
- return None, None, "Errore: Nessun documento caricato correttamente."
57
-
58
- vectorstore = Chroma.from_documents(documents, embedding_function)
59
- progress.update(0.5)
60
- logger.info("Database initialized successfully.")
61
- return vectorstore, None, "Initialized" # Aggiunto None come secondo output
62
 
63
- def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress(), language="italiano"):
64
- logger.info("Initializing LLM chain...")
65
 
66
- # Definizione del modello LLM
67
- if language == "italiano":
68
- model = AutoModelForCausalLM.from_pretrained("meta/llama-7b-hf")
69
- else:
70
- model = AutoModelForCausalLM.from_pretrained("meta/llama-7b-hf")
 
 
 
 
 
 
 
71
 
72
- tokenizer = AutoTokenizer.from_pretrained("meta/llama-7b-hf" if language == "italiano" else "meta/llama-7b-hf")
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  qa_chain = ConversationalRetrievalChain.from_llm(
75
- llm=model,
76
- retriever=vector_db.as_retriever(),
77
- chain_type="stuff",
78
- temperature=llm_temperature,
 
 
 
79
  verbose=False,
80
  )
81
- progress.update(1.0)
82
- logger.info("LLM chain initialized successfully.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  return qa_chain, "Complete!"
84
 
85
- def format_chat_history(message, history):
86
- chat_history = ""
87
- for item in history:
88
- chat_history += f"\nUser: {item[0]}\nAI: {item[1]}"
89
- chat_history += f"\n\nUser: {message}"
90
- return chat_history
91
 
92
- def translate_text(text, src_lang, dest_lang):
93
- translator = Translator()
94
- result = translator.translate(text, src=src_lang, dest=dest_lang)
95
- return result.text
 
 
 
96
 
97
- def conversation(qa_chain, message, history, language):
98
  formatted_chat_history = format_chat_history(message, history)
 
99
 
 
100
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
101
  response_answer = response["answer"]
102
- if response_answer.find("Helpful Answer:")!= -1:
103
  response_answer = response_answer.split("Helpful Answer:")[-1]
104
-
105
- if language != "italian":
106
- try:
107
- translated_response = translate_text(response_answer, src="en", dest="it")
108
- except Exception as e:
109
- logger.error(f"Error translating response: {e}")
110
- translated_response = response_answer
111
- else:
112
- translated_response = response_answer
113
-
114
  response_sources = response["source_documents"]
115
  response_source1 = response_sources[0].page_content.strip()
116
  response_source2 = response_sources[1].page_content.strip()
117
  response_source3 = response_sources[2].page_content.strip()
 
118
  response_source1_page = response_sources[0].metadata["page"] + 1
119
  response_source2_page = response_sources[1].metadata["page"] + 1
120
  response_source3_page = response_sources[2].metadata["page"] + 1
 
 
121
 
122
- new_history = history + [(message, translated_response)]
 
 
123
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
 
 
 
 
 
 
 
 
 
 
124
 
125
  def demo():
126
  with gr.Blocks(theme="base") as demo:
127
  vector_db = gr.State()
128
  qa_chain = gr.State()
129
  collection_name = gr.State()
130
- language = gr.State(value="italian") # Modifica qui
131
  gr.Markdown(
132
- """<center><h2>Chatbot basato su PDF</center></h2>
133
- <h3>Fai domande sui tuoi documenti PDF</h3>""")
 
134
  gr.Markdown(
135
- """<b>Note:</b> Questo assistente AI, utilizzando Langchain e LLM open-source, esegue retrieval-augmented generation (RAG) dai tuoi documenti PDF. \
136
- L'interfaccia utente mostra esplicitamente più passaggi per aiutare a comprendere il flusso di lavoro RAG.
137
- Questo chatbot tiene conto delle domande precedenti quando genera risposte (tramite memoria conversazionale), e include riferimenti al documento per scopi di chiarezza.<br>
138
- <br><b>Avviso:</b> Questo spazio utilizza l'hardware CPU Basic gratuito da Hugging Face. Alcuni passaggi e modelli LLM utilizzati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
139
  """)
140
 
141
- with gr.Tab("Step 1 - Carica PDF"):
142
- with gr.Row():
143
- document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carica i tuoi documenti PDF (singolo o multiplo)")
144
-
145
- with gr.Tab("Step 2 - Processa documento"):
146
- with gr.Row():
147
- db_btn = gr.Radio(["ChromaDB"], label="Tipo di database vettoriale", value = "ChromaDB", type="index", info="Scegli il tuo database vettoriale")
148
- with gr.Accordion("Opzioni avanzate - Divisore testo documento", open=False):
149
- with gr.Row():
150
- slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Dimensione chunk", info="Dimensione chunk", interactive=True)
151
- with gr.Row():
152
- slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label=" Sovrapposizione chunk", info="Sovrapposizione chunk", interactive=True)
153
- with gr.Row():
154
- db_progress = gr.Textbox(label="Inizializzazione database vettoriale", value="Nessuno")
155
- with gr.Row():
156
- db_btn = gr.Button("Genera database vettoriale")
157
-
158
- with gr.Tab("Step 3 - Inizializza catena QA"):
159
- with gr.Row():
160
- llm_btn = gr.Radio(list_llm_simple, \
161
- label="Modelli LLM", value = list_llm_simple[0], type="index", info="Scegli il tuo modello LLM")
162
- with gr.Accordion("Opzioni avanzate - Modello LLM", open=False):
163
- with gr.Row():
164
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperatura", info="Temperatura del modello", interactive=True)
165
- with gr.Row():
166
- slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Token massimi", info="Token massimi del modello", interactive=True)
167
- with gr.Row():
168
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="Campioni top-k", info="Campioni top-k del modello", interactive=True)
169
- with gr.Row():
170
- llm_progress = gr.Textbox(value="Nessuno",label="Inizializzazione catena QA")
171
- with gr.Row():
172
- qachain_btn = gr.Button("Inizializza catena Question Answering")
173
 
174
- with gr.Tab("Step 4 - Chatbot"):
175
  chatbot = gr.Chatbot(height=300)
176
- with gr.Accordion("Avanzate - Riferimenti documento", open=False):
177
  with gr.Row():
178
  doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
179
  source1_page = gr.Number(label="Pagina", scale=1)
@@ -184,19 +309,18 @@ def demo():
184
  doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
185
  source3_page = gr.Number(label="Pagina", scale=1)
186
  with gr.Row():
187
- msg = gr.Textbox(placeholder="Digita un messaggio (es. 'Di cosa parla questo documento?')", container=True)
188
  with gr.Row():
189
  submit_btn = gr.Button("Invia messaggio")
190
- clear_btn = gr.ClearButton([msg, chatbot], value="Pulisci conversazione")
191
- with gr.Row():
192
- language_selector = gr.Radio(choices=["italiano", "inglese"], value="italiano", label="Lingua")
193
-
194
  # Preprocessing events
 
195
  db_btn.click(initialize_database, \
196
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
197
  outputs=[vector_db, collection_name, db_progress])
198
  qachain_btn.click(initialize_LLM, \
199
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, language], \
200
  outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
201
  inputs=None, \
202
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
@@ -204,11 +328,11 @@ def demo():
204
 
205
  # Chatbot events
206
  msg.submit(conversation, \
207
- inputs=[qa_chain, msg, chatbot, language], \
208
  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
209
  queue=False)
210
  submit_btn.click(conversation, \
211
- inputs=[qa_chain, msg, chatbot, language], \
212
  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
213
  queue=False)
214
  clear_btn.click(lambda:[None,"",0,"",0,"",0], \
@@ -217,5 +341,7 @@ def demo():
217
  queue=False)
218
  demo.queue().launch(debug=True)
219
 
 
220
  if __name__ == "__main__":
221
  demo()
 
 
 
1
  import gradio as gr
2
  import os
3
+
4
+ from langchain_community.document_loaders import PyPDFLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain_community.vectorstores import Chroma
 
 
7
  from langchain.chains import ConversationalRetrievalChain
8
+ from langchain_community.embeddings import HuggingFaceEmbeddings
9
+ from langchain_community.llms import HuggingFacePipeline
10
+ from langchain.chains import ConversationChain
11
  from langchain.memory import ConversationBufferMemory
12
+ from langchain_community.llms import HuggingFaceEndpoint
13
+
14
+ from pathlib import Path
15
+ import chromadb
16
+ from unidecode import unidecode
17
+
18
+ from transformers import AutoTokenizer
19
+ import transformers
20
  import torch
21
+ import tqdm
22
+ import accelerate
23
+ import re
24
 
 
 
 
25
 
 
 
26
 
27
+ # default_persist_directory = './chroma_HF/'
28
+ list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
29
+ "google/gemma-7b-it","google/gemma-2b-it", \
30
+ "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
31
+ "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
32
+ "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
33
+ "google/flan-t5-xxl"
34
+ ]
35
+ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
36
 
37
+ # Load PDF document and create doc splits
38
+ def load_doc(list_file_path, chunk_size, chunk_overlap):
39
+ # Processing for one document only
40
+ # loader = PyPDFLoader(file_path)
41
+ # pages = loader.load()
42
+ loaders = [PyPDFLoader(x) for x in list_file_path]
43
+ pages = []
44
+ for loader in loaders:
45
+ pages.extend(loader.load())
46
+ # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
47
+ text_splitter = RecursiveCharacterTextSplitter(
48
+ chunk_size = chunk_size,
49
+ chunk_overlap = chunk_overlap)
50
+ doc_splits = text_splitter.split_documents(pages)
51
+ return doc_splits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
 
 
53
 
54
+ # Create vector database
55
+ def create_db(splits, collection_name):
56
+ embedding = HuggingFaceEmbeddings()
57
+ new_client = chromadb.EphemeralClient()
58
+ vectordb = Chroma.from_documents(
59
+ documents=splits,
60
+ embedding=embedding,
61
+ client=new_client,
62
+ collection_name=collection_name,
63
+ # persist_directory=default_persist_directory
64
+ )
65
+ return vectordb
66
 
 
67
 
68
+ # Load vector database
69
+ def load_db():
70
+ embedding = HuggingFaceEmbeddings()
71
+ vectordb = Chroma(
72
+ # persist_directory=default_persist_directory,
73
+ embedding_function=embedding)
74
+ return vectordb
75
+
76
+
77
+ # Initialize langchain LLM chain
78
+ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
79
+ progress(0.1, desc="Initializing HF tokenizer...")
80
+ # HuggingFacePipeline uses local model
81
+ # Note: it will download model locally...
82
+ # tokenizer=AutoTokenizer.from_pretrained(llm_model)
83
+ # progress(0.5, desc="Initializing HF pipeline...")
84
+ # pipeline=transformers.pipeline(
85
+ # "text-generation",
86
+ # model=llm_model,
87
+ # tokenizer=tokenizer,
88
+ # torch_dtype=torch.bfloat16,
89
+ # trust_remote_code=True,
90
+ # device_map="auto",
91
+ # # max_length=1024,
92
+ # max_new_tokens=max_tokens,
93
+ # do_sample=True,
94
+ # top_k=top_k,
95
+ # num_return_sequences=1,
96
+ # eos_token_id=tokenizer.eos_token_id
97
+ # )
98
+ # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
99
+
100
+ # HuggingFaceHub uses HF inference endpoints
101
+ progress(0.5, desc="Initializing HF Hub...")
102
+ # Use of trust_remote_code as model_kwargs
103
+ # Warning: langchain issue
104
+ # URL: https://github.com/langchain-ai/langchain/issues/6080
105
+ if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
106
+ llm = HuggingFaceEndpoint(
107
+ repo_id=llm_model,
108
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
109
+ temperature = temperature,
110
+ max_new_tokens = max_tokens,
111
+ top_k = top_k,
112
+ load_in_8bit = True,
113
+ )
114
+ elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
115
+ raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
116
+ llm = HuggingFaceEndpoint(
117
+ repo_id=llm_model,
118
+ temperature = temperature,
119
+ max_new_tokens = max_tokens,
120
+ top_k = top_k,
121
+ )
122
+ elif llm_model == "microsoft/phi-2":
123
+ # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
124
+ llm = HuggingFaceEndpoint(
125
+ repo_id=llm_model,
126
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
127
+ temperature = temperature,
128
+ max_new_tokens = max_tokens,
129
+ top_k = top_k,
130
+ trust_remote_code = True,
131
+ torch_dtype = "auto",
132
+ )
133
+ elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
134
+ llm = HuggingFaceEndpoint(
135
+ repo_id=llm_model,
136
+ # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
137
+ temperature = temperature,
138
+ max_new_tokens = 250,
139
+ top_k = top_k,
140
+ )
141
+ elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
142
+ raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
143
+ llm = HuggingFaceEndpoint(
144
+ repo_id=llm_model,
145
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
146
+ temperature = temperature,
147
+ max_new_tokens = max_tokens,
148
+ top_k = top_k,
149
+ )
150
+ else:
151
+ llm = HuggingFaceEndpoint(
152
+ repo_id=llm_model,
153
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
154
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
155
+ temperature = temperature,
156
+ max_new_tokens = max_tokens,
157
+ top_k = top_k,
158
+ )
159
+
160
+ progress(0.75, desc="Defining buffer memory...")
161
+ memory = ConversationBufferMemory(
162
+ memory_key="chat_history",
163
+ output_key='answer',
164
+ return_messages=True
165
+ )
166
+ # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
167
+ retriever=vector_db.as_retriever()
168
+ progress(0.8, desc="Defining retrieval chain...")
169
  qa_chain = ConversationalRetrievalChain.from_llm(
170
+ llm,
171
+ retriever=retriever,
172
+ chain_type="stuff",
173
+ memory=memory,
174
+ # combine_docs_chain_kwargs={"prompt": your_prompt})
175
+ return_source_documents=True,
176
+ #return_generated_question=False,
177
  verbose=False,
178
  )
179
+ progress(0.9, desc="Done!")
180
+ return qa_chain
181
+
182
+
183
+ # Generate collection name for vector database
184
+ # - Use filepath as input, ensuring unicode text
185
+ def create_collection_name(filepath):
186
+ # Extract filename without extension
187
+ collection_name = Path(filepath).stem
188
+ # Fix potential issues from naming convention
189
+ ## Remove space
190
+ collection_name = collection_name.replace(" ","-")
191
+ ## ASCII transliterations of Unicode text
192
+ collection_name = unidecode(collection_name)
193
+ ## Remove special characters
194
+ #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
195
+ collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
196
+ ## Limit length to 50 characters
197
+ collection_name = collection_name[:50]
198
+ ## Minimum length of 3 characters
199
+ if len(collection_name) < 3:
200
+ collection_name = collection_name + 'xyz'
201
+ ## Enforce start and end as alphanumeric character
202
+ if not collection_name[0].isalnum():
203
+ collection_name = 'A' + collection_name[1:]
204
+ if not collection_name[-1].isalnum():
205
+ collection_name = collection_name[:-1] + 'Z'
206
+ print('Filepath: ', filepath)
207
+ print('Collection name: ', collection_name)
208
+ return collection_name
209
+
210
+
211
+ # Initialize database
212
+ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
213
+ # Create list of documents (when valid)
214
+ list_file_path = [x.name for x in list_file_obj if x is not None]
215
+ # Create collection_name for vector database
216
+ progress(0.1, desc="Creating collection name...")
217
+ collection_name = create_collection_name(list_file_path[0])
218
+ progress(0.25, desc="Loading document...")
219
+ # Load document and create splits
220
+ doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
221
+ # Create or load vector database
222
+ progress(0.5, desc="Generating vector database...")
223
+ # global vector_db
224
+ vector_db = create_db(doc_splits, collection_name)
225
+ progress(0.9, desc="Done!")
226
+ return vector_db, collection_name, "Complete!"
227
+
228
+
229
+ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
230
+ # print("llm_option",llm_option)
231
+ llm_name = list_llm[llm_option]
232
+ print("llm_name: ",llm_name)
233
+ qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
234
  return qa_chain, "Complete!"
235
 
 
 
 
 
 
 
236
 
237
+ def format_chat_history(message, chat_history):
238
+ formatted_chat_history = []
239
+ for user_message, bot_message in chat_history:
240
+ formatted_chat_history.append(f"User: {user_message}")
241
+ formatted_chat_history.append(f"Assistant: {bot_message}")
242
+ return formatted_chat_history
243
+
244
 
245
+ def conversation(qa_chain, message, history):
246
  formatted_chat_history = format_chat_history(message, history)
247
+ #print("formatted_chat_history",formatted_chat_history)
248
 
249
+ # Generate response using QA chain
250
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
251
  response_answer = response["answer"]
252
+ if response_answer.find("Helpful Answer:") != -1:
253
  response_answer = response_answer.split("Helpful Answer:")[-1]
 
 
 
 
 
 
 
 
 
 
254
  response_sources = response["source_documents"]
255
  response_source1 = response_sources[0].page_content.strip()
256
  response_source2 = response_sources[1].page_content.strip()
257
  response_source3 = response_sources[2].page_content.strip()
258
+ # Langchain sources are zero-based
259
  response_source1_page = response_sources[0].metadata["page"] + 1
260
  response_source2_page = response_sources[1].metadata["page"] + 1
261
  response_source3_page = response_sources[2].metadata["page"] + 1
262
+ # print ('chat response: ', response_answer)
263
+ # print('DB source', response_sources)
264
 
265
+ # Append user message and response to chat history
266
+ new_history = history + [(message, response_answer)]
267
+ # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
268
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
269
+
270
+
271
+ def upload_file(file_obj):
272
+ list_file_path = []
273
+ for idx, file in enumerate(file_obj):
274
+ file_path = file_obj.name
275
+ list_file_path.append(file_path)
276
+ # print(file_path)
277
+ # initialize_database(file_path, progress)
278
+ return list_file_path
279
 
280
  def demo():
281
  with gr.Blocks(theme="base") as demo:
282
  vector_db = gr.State()
283
  qa_chain = gr.State()
284
  collection_name = gr.State()
285
+
286
  gr.Markdown(
287
+ """<center><h2>Creatore di chatbot basato su PDF</center></h2>
288
+ <h3>Potete fare domande su i vostri documenti PDF</h3>""")
289
+
290
  gr.Markdown(
291
+ """<b>Nota:</b> Questo assistente IA, utilizzando Langchain e modelli LLM open source, esegue generazione aumentata da recupero (RAG) dai vostri documenti PDF. \
292
+ L'interfaccia utente esplicitamente mostra i passaggi multipli per aiutare a comprendere il flusso di lavoro RAG.
293
+ Questo chatbot tiene conto delle domande passate nel generare le risposte (tramite memoria conversazionale), e include riferimenti ai documenti per scopi di chiarezza.<br>
294
+ <br><b>Avviso:</b> Questo spazio utilizza l'hardware di base CPU gratuito da Hugging Face. Alcuni passaggi e modelli LLM usati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
295
  """)
296
 
297
+ # ... (resto del codice rimane invariato)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
 
299
+ with gr.Tab("Passo 4 - Chatbot"):
300
  chatbot = gr.Chatbot(height=300)
301
+ with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False):
302
  with gr.Row():
303
  doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
304
  source1_page = gr.Number(label="Pagina", scale=1)
 
309
  doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
310
  source3_page = gr.Number(label="Pagina", scale=1)
311
  with gr.Row():
312
+ msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True)
313
  with gr.Row():
314
  submit_btn = gr.Button("Invia messaggio")
315
+ clear_btn = gr.ClearButton([msg, chatbot], value="Cancella conversazione")
316
+
 
 
317
  # Preprocessing events
318
+ #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
319
  db_btn.click(initialize_database, \
320
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
321
  outputs=[vector_db, collection_name, db_progress])
322
  qachain_btn.click(initialize_LLM, \
323
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
324
  outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
325
  inputs=None, \
326
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
 
328
 
329
  # Chatbot events
330
  msg.submit(conversation, \
331
+ inputs=[qa_chain, msg, chatbot], \
332
  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
333
  queue=False)
334
  submit_btn.click(conversation, \
335
+ inputs=[qa_chain, msg, chatbot], \
336
  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
337
  queue=False)
338
  clear_btn.click(lambda:[None,"",0,"",0,"",0], \
 
341
  queue=False)
342
  demo.queue().launch(debug=True)
343
 
344
+
345
  if __name__ == "__main__":
346
  demo()
347
+