farmax commited on
Commit
8139c9f
·
verified ·
1 Parent(s): 7d7d828

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -291
app.py CHANGED
@@ -1,358 +1,193 @@
1
  import gradio as gr
2
  import os
3
-
4
- from langchain_community.document_loaders import PyPDFLoader
5
- from langchain.text_splitter import RecursiveCharacterTextSplitter
6
- from langchain_community.vectorstores import Chroma
7
- from langchain.chains import ConversationalRetrievalChain
8
- from langchain_community.embeddings import HuggingFaceEmbeddings
9
- from langchain_community.llms import HuggingFacePipeline
10
- from langchain.chains import ConversationChain
 
 
11
  from langchain.memory import ConversationBufferMemory
12
- from langchain_community.llms import HuggingFaceEndpoint
13
-
14
- from pathlib import Path
15
- import chromadb
16
- from unidecode import unidecode
17
-
18
- from transformers import AutoTokenizer
19
- import transformers
20
  import torch
21
- import tqdm
22
- import accelerate
23
- import re
24
-
25
-
26
-
27
- # default_persist_directory = './chroma_HF/'
28
- list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
29
- "google/gemma-7b-it","google/gemma-2b-it", \
30
- "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
31
- "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
32
- "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
33
- "google/flan-t5-xxl"
34
- ]
35
- list_llm_simple = [os.path.basename(llm) for llm in list_llm]
36
-
37
- # Load PDF document and create doc splits
38
- def load_doc(list_file_path, chunk_size, chunk_overlap):
39
- # Processing for one document only
40
- # loader = PyPDFLoader(file_path)
41
- # pages = loader.load()
42
- loaders = [PyPDFLoader(x) for x in list_file_path]
43
- pages = []
44
- for loader in loaders:
45
- pages.extend(loader.load())
46
- # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
47
- text_splitter = RecursiveCharacterTextSplitter(
48
- chunk_size = chunk_size,
49
- chunk_overlap = chunk_overlap)
50
- doc_splits = text_splitter.split_documents(pages)
51
- return doc_splits
52
-
53
-
54
- # Create vector database
55
- def create_db(splits, collection_name):
56
- embedding = HuggingFaceEmbeddings()
57
- new_client = chromadb.EphemeralClient()
58
- vectordb = Chroma.from_documents(
59
- documents=splits,
60
- embedding=embedding,
61
- client=new_client,
62
- collection_name=collection_name,
63
- # persist_directory=default_persist_directory
64
- )
65
- return vectordb
66
-
67
-
68
- # Load vector database
69
- def load_db():
70
- embedding = HuggingFaceEmbeddings()
71
- vectordb = Chroma(
72
- # persist_directory=default_persist_directory,
73
- embedding_function=embedding)
74
- return vectordb
75
-
76
-
77
- # Initialize langchain LLM chain
78
- def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
79
- progress(0.1, desc="Initializing HF tokenizer...")
80
- # HuggingFacePipeline uses local model
81
- # Note: it will download model locally...
82
- # tokenizer=AutoTokenizer.from_pretrained(llm_model)
83
- # progress(0.5, desc="Initializing HF pipeline...")
84
- # pipeline=transformers.pipeline(
85
- # "text-generation",
86
- # model=llm_model,
87
- # tokenizer=tokenizer,
88
- # torch_dtype=torch.bfloat16,
89
- # trust_remote_code=True,
90
- # device_map="auto",
91
- # # max_length=1024,
92
- # max_new_tokens=max_tokens,
93
- # do_sample=True,
94
- # top_k=top_k,
95
- # num_return_sequences=1,
96
- # eos_token_id=tokenizer.eos_token_id
97
- # )
98
- # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
99
 
100
- # HuggingFaceHub uses HF inference endpoints
101
- progress(0.5, desc="Initializing HF Hub...")
102
- # Use of trust_remote_code as model_kwargs
103
- # Warning: langchain issue
104
- # URL: https://github.com/langchain-ai/langchain/issues/6080
105
- if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
106
- llm = HuggingFaceEndpoint(
107
- repo_id=llm_model,
108
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
109
- temperature = temperature,
110
- max_new_tokens = max_tokens,
111
- top_k = top_k,
112
- load_in_8bit = True,
113
- )
114
- elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
115
- raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
116
- llm = HuggingFaceEndpoint(
117
- repo_id=llm_model,
118
- temperature = temperature,
119
- max_new_tokens = max_tokens,
120
- top_k = top_k,
121
- )
122
- elif llm_model == "microsoft/phi-2":
123
- # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
124
- llm = HuggingFaceEndpoint(
125
- repo_id=llm_model,
126
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
127
- temperature = temperature,
128
- max_new_tokens = max_tokens,
129
- top_k = top_k,
130
- trust_remote_code = True,
131
- torch_dtype = "auto",
132
- )
133
- elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
134
- llm = HuggingFaceEndpoint(
135
- repo_id=llm_model,
136
- # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
137
- temperature = temperature,
138
- max_new_tokens = 250,
139
- top_k = top_k,
140
- )
141
- elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
142
- raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
143
- llm = HuggingFaceEndpoint(
144
- repo_id=llm_model,
145
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
146
- temperature = temperature,
147
- max_new_tokens = max_tokens,
148
- top_k = top_k,
149
- )
150
  else:
151
- llm = HuggingFaceEndpoint(
152
- repo_id=llm_model,
153
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
154
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
155
- temperature = temperature,
156
- max_new_tokens = max_tokens,
157
- top_k = top_k,
158
- )
159
 
160
- progress(0.75, desc="Defining buffer memory...")
161
- memory = ConversationBufferMemory(
162
- memory_key="chat_history",
163
- output_key='answer',
164
- return_messages=True
165
- )
166
- # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
167
- retriever=vector_db.as_retriever()
168
- progress(0.8, desc="Defining retrieval chain...")
169
- qa_chain = ConversationalRetrievalChain.from_llm(
170
- llm,
171
- retriever=retriever,
172
- chain_type="stuff",
173
- memory=memory,
174
- # combine_docs_chain_kwargs={"prompt": your_prompt})
175
- return_source_documents=True,
176
- #return_generated_question=False,
177
- verbose=False,
178
  )
179
- progress(0.9, desc="Done!")
180
- return qa_chain
181
-
182
-
183
- # Generate collection name for vector database
184
- # - Use filepath as input, ensuring unicode text
185
- def create_collection_name(filepath):
186
- # Extract filename without extension
187
- collection_name = Path(filepath).stem
188
- # Fix potential issues from naming convention
189
- ## Remove space
190
- collection_name = collection_name.replace(" ","-")
191
- ## ASCII transliterations of Unicode text
192
- collection_name = unidecode(collection_name)
193
- ## Remove special characters
194
- #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
195
- collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
196
- ## Limit length to 50 characters
197
- collection_name = collection_name[:50]
198
- ## Minimum length of 3 characters
199
- if len(collection_name) < 3:
200
- collection_name = collection_name + 'xyz'
201
- ## Enforce start and end as alphanumeric character
202
- if not collection_name[0].isalnum():
203
- collection_name = 'A' + collection_name[1:]
204
- if not collection_name[-1].isalnum():
205
- collection_name = collection_name[:-1] + 'Z'
206
- print('Filepath: ', filepath)
207
- print('Collection name: ', collection_name)
208
- return collection_name
209
-
210
-
211
- # Initialize database
212
- def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
213
- # Create list of documents (when valid)
214
- list_file_path = [x.name for x in list_file_obj if x is not None]
215
- # Create collection_name for vector database
216
- progress(0.1, desc="Creating collection name...")
217
- collection_name = create_collection_name(list_file_path[0])
218
- progress(0.25, desc="Loading document...")
219
- # Load document and create splits
220
- doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
221
- # Create or load vector database
222
- progress(0.5, desc="Generating vector database...")
223
- # global vector_db
224
- vector_db = create_db(doc_splits, collection_name)
225
- progress(0.9, desc="Done!")
226
- return vector_db, collection_name, "Complete!"
227
-
228
-
229
- def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
230
- # print("llm_option",llm_option)
231
- llm_name = list_llm[llm_option]
232
- print("llm_name: ",llm_name)
233
- qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
234
  return qa_chain, "Complete!"
235
 
 
 
 
 
 
 
236
 
237
- def format_chat_history(message, chat_history):
238
- formatted_chat_history = []
239
- for user_message, bot_message in chat_history:
240
- formatted_chat_history.append(f"User: {user_message}")
241
- formatted_chat_history.append(f"Assistant: {bot_message}")
242
- return formatted_chat_history
243
-
244
 
245
- def conversation(qa_chain, message, history):
246
  formatted_chat_history = format_chat_history(message, history)
247
- #print("formatted_chat_history",formatted_chat_history)
248
 
249
- # Generate response using QA chain
250
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
251
  response_answer = response["answer"]
252
- if response_answer.find("Helpful Answer:") != -1:
253
  response_answer = response_answer.split("Helpful Answer:")[-1]
 
 
 
 
 
 
 
 
 
 
254
  response_sources = response["source_documents"]
255
  response_source1 = response_sources[0].page_content.strip()
256
  response_source2 = response_sources[1].page_content.strip()
257
  response_source3 = response_sources[2].page_content.strip()
258
- # Langchain sources are zero-based
259
  response_source1_page = response_sources[0].metadata["page"] + 1
260
  response_source2_page = response_sources[1].metadata["page"] + 1
261
  response_source3_page = response_sources[2].metadata["page"] + 1
262
- # print ('chat response: ', response_answer)
263
- # print('DB source', response_sources)
264
 
265
- # Append user message and response to chat history
266
- new_history = history + [(message, response_answer)]
267
- # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
268
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
269
-
270
-
271
- def upload_file(file_obj):
272
- list_file_path = []
273
- for idx, file in enumerate(file_obj):
274
- file_path = file_obj.name
275
- list_file_path.append(file_path)
276
- # print(file_path)
277
- # initialize_database(file_path, progress)
278
- return list_file_path
279
-
280
 
281
  def demo():
282
  with gr.Blocks(theme="base") as demo:
283
  vector_db = gr.State()
284
  qa_chain = gr.State()
285
  collection_name = gr.State()
 
286
 
287
  gr.Markdown(
288
- """<center><h2>PDF-based chatbot</center></h2>
289
- <h3>Ask any questions about your PDF documents</h3>""")
290
  gr.Markdown(
291
- """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
292
- The user interface explicitely shows multiple steps to help understand the RAG workflow.
293
- This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
294
- <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
295
  """)
296
 
297
- with gr.Tab("Step 1 - Upload PDF"):
298
  with gr.Row():
299
- document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
300
- # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
301
 
302
- with gr.Tab("Step 2 - Process document"):
303
  with gr.Row():
304
- db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
305
- with gr.Accordion("Advanced options - Document text splitter", open=False):
306
  with gr.Row():
307
- slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
308
  with gr.Row():
309
- slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
310
  with gr.Row():
311
- db_progress = gr.Textbox(label="Vector database initialization", value="None")
312
  with gr.Row():
313
- db_btn = gr.Button("Generate vector database")
314
 
315
- with gr.Tab("Step 3 - Initialize QA chain"):
316
  with gr.Row():
317
  llm_btn = gr.Radio(list_llm_simple, \
318
- label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
319
- with gr.Accordion("Advanced options - LLM model", open=False):
320
  with gr.Row():
321
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
322
  with gr.Row():
323
- slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
324
  with gr.Row():
325
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
326
  with gr.Row():
327
- llm_progress = gr.Textbox(value="None",label="QA chain initialization")
328
  with gr.Row():
329
- qachain_btn = gr.Button("Initialize Question Answering chain")
330
 
331
  with gr.Tab("Step 4 - Chatbot"):
332
  chatbot = gr.Chatbot(height=300)
333
- with gr.Accordion("Advanced - Document references", open=False):
334
  with gr.Row():
335
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
336
- source1_page = gr.Number(label="Page", scale=1)
337
  with gr.Row():
338
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
339
- source2_page = gr.Number(label="Page", scale=1)
340
  with gr.Row():
341
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
342
- source3_page = gr.Number(label="Page", scale=1)
343
  with gr.Row():
344
- msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
345
  with gr.Row():
346
- submit_btn = gr.Button("Submit message")
347
- clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
 
 
348
 
349
  # Preprocessing events
350
- #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
351
  db_btn.click(initialize_database, \
352
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
353
  outputs=[vector_db, collection_name, db_progress])
354
  qachain_btn.click(initialize_LLM, \
355
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
356
  outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
357
  inputs=None, \
358
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
@@ -360,15 +195,18 @@ def demo():
360
 
361
  # Chatbot events
362
  msg.submit(conversation, \
363
- inputs=[qa_chain, msg, chatbot], \
364
  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
365
  queue=False)
366
  submit_btn.click(conversation, \
367
- inputs=[qa_chain, msg, chatbot], \
368
  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
369
  queue=False)
370
  clear_btn.click(lambda:[None,"",0,"",0,"",0], \
371
  inputs=None, \
 
 
 
372
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
373
  queue=False)
374
  demo.queue().launch(debug=True)
 
1
  import gradio as gr
2
  import os
3
+ from googletrans import Translator
4
+ import requests
5
+ from dotenv import load_dotenv
6
+ import numpy as np
7
+ from langchain.embeddings import Chroma
8
+ from langchain.vectorstores import Chroma
9
+ from langchain.document_loaders import UnstructuredPDFLoader
10
+ from langchain.text_splitter import CharacterTextSplitter
11
+ from langchain.chains.qa_with_sources import load_qa_with_sources_from_chain_type
12
+ from langchain.schema import Document
13
  from langchain.memory import ConversationBufferMemory
14
+ from langchain.callbacks.manager import CallbackManager
15
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
16
+ from langchain.llms.base import LLM
17
+ from typing import List, Dict, Any, Optional
18
+ from pydantic import BaseModel
19
+ from tqdm import tqdm
 
 
20
  import torch
21
+ import logging
22
+
23
+ logging.basicConfig(level=logging.INFO)
24
+ logger = logging.getLogger(__name__)
25
+
26
+ class PDFDocument(Document):
27
+ def _extract_metadata(self, **kwargs) -> Dict[str, Any]:
28
+ metadata = super()._extract_metadata(**kwargs)
29
+ metadata["filename"] = self.page_content
30
+ return metadata
31
+
32
+ def initialize_database(document, chunk_size, chunk_overlap, progress=gr.Progress()):
33
+ logger.info("Initializing database...")
34
+ embedding_function = Chroma.from_pretrained("chroma-rt")
35
+ documents = []
36
+ for file in document:
37
+ loader = UnstructuredPDFLoader(file.name)
38
+ docs = loader.load()
39
+ splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
40
+ for doc in docs:
41
+ pages = splitter.split_document(doc)
42
+ for page in pages:
43
+ documents.append(PDFDocument(page_content=page.page_content, metadata={"filename": file.name}))
44
+ vectorstore = Chroma.create_index(embedding_function, documents)
45
+ progress.update(0.5)
46
+ logger.info("Database initialized successfully.")
47
+ return vectorstore, "Initialized"
48
+
49
+ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress(), language="italian"):
50
+ logger.info("Initializing LLM chain...")
51
+ llm_name = list_llm[llm_option]
52
+ print("llm_name: ",llm_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
+ if language == "italian":
55
+ default_llm = "google/gemma-7b-it"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  else:
57
+ default_llm = "mistralai/Mistral-7B-Instruct-v0.2"
 
 
 
 
 
 
 
58
 
59
+ if llm_name != default_llm:
60
+ print(f"Using default LLM {default_llm} for {language}")
61
+ llm_name = default_llm
62
+
63
+ qa_chain = load_qa_with_sources_from_chain_type(
64
+ llm=llm_name,
65
+ chain_type="stuff",
66
+ retriever=vector_db.as_retriever(),
67
+ temperature=llm_temperature,
68
+ top_k_per_token=top_k,
69
+ max_tokens=max_tokens,
 
 
 
 
 
 
 
70
  )
71
+ progress.update(1.0)
72
+ logger.info("LLM chain initialized successfully.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  return qa_chain, "Complete!"
74
 
75
+ def format_chat_history(message, history):
76
+ chat_history = ""
77
+ for item in history:
78
+ chat_history += f"\nUser: {item[0]}\nAI: {item[1]}"
79
+ chat_history += f"\n\nUser: {message}"
80
+ return chat_history
81
 
82
+ def translate_text(text, src_lang, dest_lang):
83
+ translator = Translator()
84
+ result = translator.translate(text, src=src_lang, dest=dest_lang)
85
+ return result.text
 
 
 
86
 
87
+ def conversation(qa_chain, message, history, language):
88
  formatted_chat_history = format_chat_history(message, history)
 
89
 
 
90
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
91
  response_answer = response["answer"]
92
+ if response_answer.find("Helpful Answer:")!= -1:
93
  response_answer = response_answer.split("Helpful Answer:")[-1]
94
+
95
+ if language != "italian":
96
+ try:
97
+ translated_response = translate_text(response_answer, src="en", dest="it")
98
+ except Exception as e:
99
+ logger.error(f"Error translating response: {e}")
100
+ translated_response = response_answer
101
+ else:
102
+ translated_response = response_answer
103
+
104
  response_sources = response["source_documents"]
105
  response_source1 = response_sources[0].page_content.strip()
106
  response_source2 = response_sources[1].page_content.strip()
107
  response_source3 = response_sources[2].page_content.strip()
 
108
  response_source1_page = response_sources[0].metadata["page"] + 1
109
  response_source2_page = response_sources[1].metadata["page"] + 1
110
  response_source3_page = response_sources[2].metadata["page"] + 1
 
 
111
 
112
+ new_history = history + [(message, translated_response)]
 
 
113
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
 
 
 
 
 
 
 
 
 
 
 
114
 
115
  def demo():
116
  with gr.Blocks(theme="base") as demo:
117
  vector_db = gr.State()
118
  qa_chain = gr.State()
119
  collection_name = gr.State()
120
+ language = gr.State(default_value="italian")
121
 
122
  gr.Markdown(
123
+ """<center><h2>Chatbot basato su PDF</center></h2>
124
+ <h3>Fai domande sui tuoi documenti PDF</h3>""")
125
  gr.Markdown(
126
+ """<b>Note:</b> Questo assistente AI, utilizzando Langchain e LLM open-source, esegue retrieval-augmented generation (RAG) dai tuoi documenti PDF. \
127
+ L'interfaccia utente mostra esplicitamente più passaggi per aiutare a comprendere il flusso di lavoro RAG.
128
+ Questo chatbot tiene conto delle domande precedenti quando genera risposte (tramite memoria conversazionale), e include riferimenti al documento per scopi di chiarezza.<br>
129
+ <br><b>Avviso:</b> Questo spazio utilizza l'hardware CPU Basic gratuito da Hugging Face. Alcuni passaggi e modelli LLM utilizzati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
130
  """)
131
 
132
+ with gr.Tab("Step 1 - Carica PDF"):
133
  with gr.Row():
134
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carica i tuoi documenti PDF (singolo o multiplo)")
 
135
 
136
+ with gr.Tab("Step 2 - Processa documento"):
137
  with gr.Row():
138
+ db_btn = gr.Radio(["ChromaDB"], label="Tipo di database vettoriale", value = "ChromaDB", type="index", info="Scegli il tuo database vettoriale")
139
+ with gr.Accordion("Opzioni avanzate - Divisore testo documento", open=False):
140
  with gr.Row():
141
+ slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Dimensione chunk", info="Dimensione chunk", interactive=True)
142
  with gr.Row():
143
+ slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label=" Sovrapposizione chunk", info="Sovrapposizione chunk", interactive=True)
144
  with gr.Row():
145
+ db_progress = gr.Textbox(label="Inizializzazione database vettoriale", value="Nessuno")
146
  with gr.Row():
147
+ db_btn = gr.Button("Genera database vettoriale")
148
 
149
+ with gr.Tab("Step 3 - Inizializza catena QA"):
150
  with gr.Row():
151
  llm_btn = gr.Radio(list_llm_simple, \
152
+ label="Modelli LLM", value = list_llm_simple[0], type="index", info="Scegli il tuo modello LLM")
153
+ with gr.Accordion("Opzioni avanzate - Modello LLM", open=False):
154
  with gr.Row():
155
+ slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperatura", info="Temperatura del modello", interactive=True)
156
  with gr.Row():
157
+ slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Token massimi", info="Token massimi del modello", interactive=True)
158
  with gr.Row():
159
+ slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="Campioni top-k", info="Campioni top-k del modello", interactive=True)
160
  with gr.Row():
161
+ llm_progress = gr.Textbox(value="Nessuno",label="Inizializzazione catena QA")
162
  with gr.Row():
163
+ qachain_btn = gr.Button("Inizializza catena Question Answering")
164
 
165
  with gr.Tab("Step 4 - Chatbot"):
166
  chatbot = gr.Chatbot(height=300)
167
+ with gr.Accordion("Avanzate - Riferimenti documento", open=False):
168
  with gr.Row():
169
+ doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
170
+ source1_page = gr.Number(label="Pagina", scale=1)
171
  with gr.Row():
172
+ doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20)
173
+ source2_page = gr.Number(label="Pagina", scale=1)
174
  with gr.Row():
175
+ doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
176
+ source3_page = gr.Number(label="Pagina", scale=1)
177
  with gr.Row():
178
+ msg = gr.Textbox(placeholder="Digita un messaggio (es. 'Di cosa parla questo documento?')", container=True)
179
  with gr.Row():
180
+ submit_btn = gr.Button("Invia messaggio")
181
+ clear_btn = gr.ClearButton([msg, chatbot], value="Pulisci conversazione")
182
+ with gr.Row():
183
+ language_selector = gr.Radio(choices=["italiano", "inglese"], value="italiano", label="Lingua")
184
 
185
  # Preprocessing events
 
186
  db_btn.click(initialize_database, \
187
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
188
  outputs=[vector_db, collection_name, db_progress])
189
  qachain_btn.click(initialize_LLM, \
190
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, language], \
191
  outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
192
  inputs=None, \
193
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
 
195
 
196
  # Chatbot events
197
  msg.submit(conversation, \
198
+ inputs=[qa_chain, msg, chatbot, language], \
199
  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
200
  queue=False)
201
  submit_btn.click(conversation, \
202
+ inputs=[qa_chain, msg, chatbot, language], \
203
  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
204
  queue=False)
205
  clear_btn.click(lambda:[None,"",0,"",0,"",0], \
206
  inputs=None, \
207
+ outputs=[chatbot, doc_source1, source1```
208
+ clear_btn.click(lambda:[None,"",0,"",0,"",0], \
209
+ inputs=None, \
210
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
211
  queue=False)
212
  demo.queue().launch(debug=True)