pdf-rag-chatbot / app.py
farmax's picture
Update app.py
a7ce1c0 verified
raw
history blame
12.2 kB
from langchain_huggingface import HuggingFaceEmbeddings
import gradio as gr
import os
from googletrans import Translator
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import UnstructuredPDFLoader, PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.schema import Document
from langchain.memory import ConversationBufferMemory
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.llms.base import LLM
from typing import List, Dict, Any, Optional
from pydantic import BaseModel
from langchain.llms.base import LLM
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import logging
# Configurazione del logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Aggiornamento dell'inizializzazione di HuggingFaceEmbeddings
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Definizione della lista di modelli LLM
list_llm_simple = ["Gemma 7B (Italian)", "Mistral 7B"]
list_llm = ["google/gemma-7b-it", "mistralai/Mistral-7B-Instruct-v0.2"]
def initialize_database(document, chunk_size, chunk_overlap, progress=gr.Progress()):
logger.info("Initializing database...")
documents = []
splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
for file in document:
try:
loader = UnstructuredPDFLoader(file.name)
docs = loader.load()
except ImportError:
logger.warning("UnstructuredPDFLoader non disponibile. Tentativo di utilizzo di PyPDFLoader.")
try:
loader = PyPDFLoader(file.name)
docs = loader.load()
except ImportError:
logger.error("Impossibile caricare il documento PDF. Assicurati di aver installato 'unstructured' o 'pypdf'.")
return None, None, "Errore: Pacchetti necessari non installati. Esegui 'pip install unstructured pypdf' e riprova."
for doc in docs:
text_chunks = splitter.split_text(doc.page_content)
for chunk in text_chunks:
documents.append(Document(page_content=chunk, metadata={"filename": file.name, "page": doc.metadata.get("page", 0)}))
if not documents:
return None, None, "Errore: Nessun documento caricato correttamente."
vectorstore = Chroma.from_documents(documents, embedding_function)
progress.update(0.5)
logger.info("Database initialized successfully.")
return vectorstore, None, "Initialized" # Aggiunto None come secondo output
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress(), language="italiano"):
logger.info("Initializing LLM chain...")
# Define the default LLMS based on the language
if language == "italiano":
default_llm = "google/gemma-7b-it"
else:
default_llm = "google/gemma-7b" # English version
# Try to load the tokenizer and model with authentication
try:
# Option 1: Using HF_TOKEN environment variable
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN environment variable is not set")
tokenizer = AutoTokenizer.from_pretrained(default_llm, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(default_llm, token=hf_token)
except Exception as e:
logger.error(f"Error initializing LLM: {e}")
return None, "Failed to initialize LLM"
# Resize token embeddings if needed
if len(tokenizer) > model.config.max_position_embeddings:
model.resize_token_embeddings(len(tokenizer))
qa_chain = ConversationalRetrievalChain.from_llm(
llm=model,
retriever=vector_db.as_retriever(),
chain_type="stuff",
temperature=llm_temperature,
verbose=False,
)
progress.update(1.0)
logger.info("LLM chain initialized successfully.")
return qa_chain, "Complete!"
def format_chat_history(message, history):
chat_history = ""
for item in history:
chat_history += f"\nUser: {item[0]}\nAI: {item[1]}"
chat_history += f"\n\nUser: {message}"
return chat_history
def translate_text(text, src_lang, dest_lang):
translator = Translator()
result = translator.translate(text, src=src_lang, dest=dest_lang)
return result.text
def conversation(qa_chain, message, history, language):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:")!= -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
if language != "italian":
try:
translated_response = translate_text(response_answer, src="en", dest="it")
except Exception as e:
logger.error(f"Error translating response: {e}")
translated_response = response_answer
else:
translated_response = response_answer
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, translated_response)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
language = gr.State(value="italian") # Modifica qui
gr.Markdown(
"""<center><h2>Chatbot basato su PDF</center></h2>
<h3>Fai domande sui tuoi documenti PDF</h3>""")
gr.Markdown(
"""<b>Note:</b> Questo assistente AI, utilizzando Langchain e LLM open-source, esegue retrieval-augmented generation (RAG) dai tuoi documenti PDF. \
L'interfaccia utente mostra esplicitamente più passaggi per aiutare a comprendere il flusso di lavoro RAG.
Questo chatbot tiene conto delle domande precedenti quando genera risposte (tramite memoria conversazionale), e include riferimenti al documento per scopi di chiarezza.<br>
<br><b>Avviso:</b> Questo spazio utilizza l'hardware CPU Basic gratuito da Hugging Face. Alcuni passaggi e modelli LLM utilizzati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
""")
with gr.Tab("Step 1 - Carica PDF"):
with gr.Row():
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carica i tuoi documenti PDF (singolo o multiplo)")
with gr.Tab("Step 2 - Processa documento"):
with gr.Row():
db_btn = gr.Radio(["ChromaDB"], label="Tipo di database vettoriale", value = "ChromaDB", type="index", info="Scegli il tuo database vettoriale")
with gr.Accordion("Opzioni avanzate - Divisore testo documento", open=False):
with gr.Row():
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Dimensione chunk", info="Dimensione chunk", interactive=True)
with gr.Row():
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label=" Sovrapposizione chunk", info="Sovrapposizione chunk", interactive=True)
with gr.Row():
db_progress = gr.Textbox(label="Inizializzazione database vettoriale", value="Nessuno")
with gr.Row():
db_btn = gr.Button("Genera database vettoriale")
with gr.Tab("Step 3 - Inizializza catena QA"):
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, \
label="Modelli LLM", value = list_llm_simple[0], type="index", info="Scegli il tuo modello LLM")
with gr.Accordion("Opzioni avanzate - Modello LLM", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperatura", info="Temperatura del modello", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Token massimi", info="Token massimi del modello", interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="Campioni top-k", info="Campioni top-k del modello", interactive=True)
with gr.Row():
llm_progress = gr.Textbox(value="Nessuno",label="Inizializzazione catena QA")
with gr.Row():
qachain_btn = gr.Button("Inizializza catena Question Answering")
with gr.Tab("Step 4 - Chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Avanzate - Riferimenti documento", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Digita un messaggio (es. 'Di cosa parla questo documento?')", container=True)
with gr.Row():
submit_btn = gr.Button("Invia messaggio")
clear_btn = gr.ClearButton([msg, chatbot], value="Pulisci conversazione")
with gr.Row():
language_selector = gr.Radio(choices=["italiano", "inglese"], value="italiano", label="Lingua")
# Preprocessing events
db_btn.click(initialize_database, \
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
outputs=[vector_db, collection_name, db_progress])
qachain_btn.click(initialize_LLM, \
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, language], \
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
# Chatbot events
msg.submit(conversation, \
inputs=[qa_chain, msg, chatbot, language], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
submit_btn.click(conversation, \
inputs=[qa_chain, msg, chatbot, language], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()