Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
from tabulate import tabulate
|
|
|
4 |
|
5 |
-
num_gpu
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
def main(num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_window):
|
12 |
-
#parser = argparse.ArgumentParser(description='Your script description')
|
13 |
-
#parser.add_argument('-g', '--num_gpu', type=int, default=1, help='Number of GPUs')
|
14 |
-
#parser.add_argument('-p', '--prompt_sz', type=int, default=4096, help='Prompt size in tokens')
|
15 |
-
#parser.add_argument('-r', '--response_sz', type=int, default=256, help='Response size in tokens')
|
16 |
-
#parser.add_argument('-c', '--n_concurrent_req', type=int, default=10, help='Number of concurrent requests')
|
17 |
-
#parser.add_argument('-w', '-cw', '--ctx_window', type=int, default=1024, help='Average context window')
|
18 |
-
|
19 |
-
# args = parser.parse_args()
|
20 |
-
|
21 |
-
# Print input
|
22 |
-
print(f" num_gpu = {num_gpu}, prompt_size = {prompt_size} tokens, response_size = {response_size} tokens")
|
23 |
-
print(f" n_concurrent_request = {n_concurrent_request}, avg_context_window = {avg_context_window} tokens")
|
24 |
|
25 |
# Define variables
|
26 |
gpu_specs = [
|
@@ -35,7 +23,6 @@ def main(num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_
|
|
35 |
{"name": "H100 PCIe", "fp16_tflops": 1513, "memory_gb": 80, "memory_bandwidth_gbps": 2000},
|
36 |
{"name": "H100 SXM", "fp16_tflops": 1979, "memory_gb": 80, "memory_bandwidth_gbps": 3350},
|
37 |
{"name": "H100 NVL", "fp16_tflops": 3958, "memory_gb": 188, "memory_bandwidth_gbps": 7800}
|
38 |
-
# Add or comment out GPU types as needed
|
39 |
]
|
40 |
|
41 |
model_specs = [
|
@@ -47,26 +34,27 @@ def main(num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_
|
|
47 |
{"name": "Falcon-7B", "params_billion": 7, "d_model": 4544, "n_heads": 71, "n_layers": 32, "max_context_window": 2048, "d_head": 64},
|
48 |
{"name": "Falcon-40B", "params_billion": 40, "d_model": 8192, "n_heads": 128, "n_layers": 60, "max_context_window": 2048, "d_head": 64},
|
49 |
{"name": "Falcon-180B", "params_billion": 180, "d_model": 14848, "n_heads": 232, "n_layers": 80, "max_context_window": 2048, "d_head": 64}
|
50 |
-
# Add or comment out model specifications as needed
|
51 |
]
|
52 |
|
53 |
-
BYTES_IN_GB = 1_073_741_824
|
54 |
|
55 |
def calc_kv_cache_size_per_token(n_layers, d_model):
|
56 |
-
return 2 * 2 * n_layers * d_model / BYTES_IN_GB
|
57 |
|
58 |
def calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window):
|
59 |
kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
|
60 |
target_gpu_mem = kv_cache_size_per_token * avg_context_window * n_concurrent_request + model_spec["params_billion"] * 2
|
61 |
return target_gpu_mem
|
62 |
|
63 |
-
print(f"\n******************** Estimate LLM Memory Footprint ********************")
|
64 |
memory_footprint_table = []
|
65 |
for model_spec in model_specs:
|
66 |
kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
|
67 |
memory_footprint = calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window)
|
68 |
memory_footprint_table.append([model_spec['name'], f"{kv_cache_size_per_token:.6f} GiB/token", f"{memory_footprint:.2f} GB"])
|
69 |
-
|
|
|
|
|
70 |
|
71 |
def calc_kv_cache_tokens(num_gpu, gpu_memory_gb, model_params_billion, kv_cache_size):
|
72 |
result = (num_gpu * gpu_memory_gb - 2 * model_params_billion) / kv_cache_size
|
@@ -81,14 +69,13 @@ def main(num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_
|
|
81 |
return result if result >= 0 else "OOM"
|
82 |
|
83 |
def calc_estimated_response_time(prefill_time, generation_time, prompt_size, response_size):
|
84 |
-
if isinstance(prefill_time, str) or isinstance(generation_time, str):
|
85 |
return "OOM"
|
86 |
-
return (prompt_size * prefill_time + response_size * generation_time) / 1000
|
87 |
|
88 |
-
print(f"\n******************** Estimate LLM Capacity and Latency ******************** ")
|
89 |
capacity_latency_table = []
|
90 |
for model in model_specs:
|
91 |
-
# print(f"Model: {model['name']} ({model['params_billion']}B parameters)")
|
92 |
kv_cache_size = calc_kv_cache_size_per_token(model['n_layers'], model['d_model'])
|
93 |
for gpu in gpu_specs:
|
94 |
kv_cache_tokens = calc_kv_cache_tokens(num_gpu, gpu['memory_gb'], model['params_billion'], kv_cache_size)
|
@@ -96,8 +83,43 @@ def main(num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_
|
|
96 |
generation_time_per_token = calc_generation_time_per_token(num_gpu, model['params_billion'], gpu['memory_bandwidth_gbps'])
|
97 |
estimated_response_time = calc_estimated_response_time(prefill_time_per_token, generation_time_per_token, prompt_size, response_size)
|
98 |
capacity_latency_table.append([model['name'], gpu['name'], f"{kv_cache_tokens}", f"{prefill_time_per_token:.3f} ms", f"{generation_time_per_token:.3f} ms", f"{estimated_response_time:.1f} s"])
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
from tabulate import tabulate
|
4 |
+
from io import StringIO
|
5 |
|
6 |
+
def calculate_llm_metrics(num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_window):
|
7 |
+
output = StringIO()
|
8 |
+
|
9 |
+
# Print input to output buffer
|
10 |
+
print(f" num_gpu = {num_gpu}, prompt_size = {prompt_size} tokens, response_size = {response_size} tokens", file=output)
|
11 |
+
print(f" n_concurrent_request = {n_concurrent_request}, avg_context_window = {avg_context_window} tokens", file=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Define variables
|
14 |
gpu_specs = [
|
|
|
23 |
{"name": "H100 PCIe", "fp16_tflops": 1513, "memory_gb": 80, "memory_bandwidth_gbps": 2000},
|
24 |
{"name": "H100 SXM", "fp16_tflops": 1979, "memory_gb": 80, "memory_bandwidth_gbps": 3350},
|
25 |
{"name": "H100 NVL", "fp16_tflops": 3958, "memory_gb": 188, "memory_bandwidth_gbps": 7800}
|
|
|
26 |
]
|
27 |
|
28 |
model_specs = [
|
|
|
34 |
{"name": "Falcon-7B", "params_billion": 7, "d_model": 4544, "n_heads": 71, "n_layers": 32, "max_context_window": 2048, "d_head": 64},
|
35 |
{"name": "Falcon-40B", "params_billion": 40, "d_model": 8192, "n_heads": 128, "n_layers": 60, "max_context_window": 2048, "d_head": 64},
|
36 |
{"name": "Falcon-180B", "params_billion": 180, "d_model": 14848, "n_heads": 232, "n_layers": 80, "max_context_window": 2048, "d_head": 64}
|
|
|
37 |
]
|
38 |
|
39 |
+
BYTES_IN_GB = 1_073_741_824
|
40 |
|
41 |
def calc_kv_cache_size_per_token(n_layers, d_model):
|
42 |
+
return 2 * 2 * n_layers * d_model / BYTES_IN_GB
|
43 |
|
44 |
def calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window):
|
45 |
kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
|
46 |
target_gpu_mem = kv_cache_size_per_token * avg_context_window * n_concurrent_request + model_spec["params_billion"] * 2
|
47 |
return target_gpu_mem
|
48 |
|
49 |
+
print(f"\n******************** Estimate LLM Memory Footprint ********************", file=output)
|
50 |
memory_footprint_table = []
|
51 |
for model_spec in model_specs:
|
52 |
kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
|
53 |
memory_footprint = calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window)
|
54 |
memory_footprint_table.append([model_spec['name'], f"{kv_cache_size_per_token:.6f} GiB/token", f"{memory_footprint:.2f} GB"])
|
55 |
+
|
56 |
+
memory_df = pd.DataFrame(memory_footprint_table, columns=['Model', 'KV Cache Size per Token', 'Memory Footprint'])
|
57 |
+
print(tabulate(memory_footprint_table, headers=['Model', 'KV Cache Size per Token', 'Memory Footprint'], tablefmt='orgtbl'), file=output)
|
58 |
|
59 |
def calc_kv_cache_tokens(num_gpu, gpu_memory_gb, model_params_billion, kv_cache_size):
|
60 |
result = (num_gpu * gpu_memory_gb - 2 * model_params_billion) / kv_cache_size
|
|
|
69 |
return result if result >= 0 else "OOM"
|
70 |
|
71 |
def calc_estimated_response_time(prefill_time, generation_time, prompt_size, response_size):
|
72 |
+
if isinstance(prefill_time, str) or isinstance(generation_time, str):
|
73 |
return "OOM"
|
74 |
+
return (prompt_size * prefill_time + response_size * generation_time) / 1000
|
75 |
|
76 |
+
print(f"\n******************** Estimate LLM Capacity and Latency ******************** ", file=output)
|
77 |
capacity_latency_table = []
|
78 |
for model in model_specs:
|
|
|
79 |
kv_cache_size = calc_kv_cache_size_per_token(model['n_layers'], model['d_model'])
|
80 |
for gpu in gpu_specs:
|
81 |
kv_cache_tokens = calc_kv_cache_tokens(num_gpu, gpu['memory_gb'], model['params_billion'], kv_cache_size)
|
|
|
83 |
generation_time_per_token = calc_generation_time_per_token(num_gpu, model['params_billion'], gpu['memory_bandwidth_gbps'])
|
84 |
estimated_response_time = calc_estimated_response_time(prefill_time_per_token, generation_time_per_token, prompt_size, response_size)
|
85 |
capacity_latency_table.append([model['name'], gpu['name'], f"{kv_cache_tokens}", f"{prefill_time_per_token:.3f} ms", f"{generation_time_per_token:.3f} ms", f"{estimated_response_time:.1f} s"])
|
86 |
+
|
87 |
+
capacity_df = pd.DataFrame(capacity_latency_table, columns=['Model', 'GPU', 'KV Cache Tokens', 'Prefill Time', 'Generation Time', 'Estimated Response Time'])
|
88 |
+
print(tabulate(capacity_latency_table, headers=['Model', 'GPU', 'KV Cache Tokens', 'Prefill Time', 'Generation Time', 'Estimated Response Time'], tablefmt='orgtbl'), file=output)
|
89 |
+
|
90 |
+
return output.getvalue(), memory_df, capacity_df
|
91 |
+
|
92 |
+
# Create Gradio interface
|
93 |
+
with gr.Blocks(title="LLM Calculator") as demo:
|
94 |
+
gr.Markdown("# LLM Memory and Performance Calculator")
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
with gr.Column():
|
98 |
+
num_gpu = gr.Slider(minimum=1, maximum=8, value=1, step=1, label="Number of GPUs")
|
99 |
+
prompt_size = gr.Slider(minimum=1, maximum=8192, value=4096, step=1, label="Prompt Size (tokens)")
|
100 |
+
response_size = gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Response Size (tokens)")
|
101 |
+
n_concurrent_request = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Number of Concurrent Requests")
|
102 |
+
avg_context_window = gr.Slider(minimum=1, maximum=8192, value=1024, step=1, label="Average Context Window (tokens)")
|
103 |
+
|
104 |
+
calculate_button = gr.Button("Calculate")
|
105 |
+
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
text_output = gr.Textbox(label="Detailed Output", lines=10)
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
memory_table = gr.Dataframe(label="Memory Footprint Results")
|
113 |
+
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column():
|
116 |
+
capacity_table = gr.Dataframe(label="Capacity and Latency Results")
|
117 |
+
|
118 |
+
calculate_button.click(
|
119 |
+
calculate_llm_metrics,
|
120 |
+
inputs=[num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_window],
|
121 |
+
outputs=[text_output, memory_table, capacity_table]
|
122 |
+
)
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
+
demo.launch()
|