farmax commited on
Commit
8ff9417
·
verified ·
1 Parent(s): a92af8c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -111
app.py CHANGED
@@ -1,132 +1,63 @@
1
  import gradio as gr
2
  import argparse
3
- from tabulate import tabulate
4
 
5
  def main():
6
- parser = argparse.ArgumentParser(description='Estimate LLM Memory Footprint')
7
- parser.add_argument('--num_gpu', type=int, default=1, help='Number of GPUs')
8
- parser.add_argument('--prompt_sz', type=int, default=4096, help='Prompt size in tokens')
9
- parser.add_argument('--response_sz', type=int, default=256, help='Response size in tokens')
10
- parser.add_argument('--n_concurrent_req', type=int, default=10, help='Number of concurrent requests')
11
- parser.add_argument('--ctx_window', type=int, default=1024, help='Average context window')
12
 
13
  args = parser.parse_args()
14
 
15
- num_gpu = args.num_gpu
16
- prompt_size = args.prompt_sz
17
- response_size = args.response_sz
18
- n_concurrent_request = args.n_concurrent_req
19
- avg_context_window = args.ctx_window
20
 
21
- # Print input
22
- print(f" num_gpu = {num_gpu}, prompt_size = {prompt_size} tokens, response_size = {response_size} tokens")
23
- print(f" n_concurrent_request = {n_concurrent_request}, avg_context_window = {avg_context_window} tokens")
 
24
 
25
- # Define variables
26
- gpu_specs = [
27
- {"name": "A10", "fp16_tflops": 125, "memory_gb": 24, "memory_bandwidth_gbps": 600},
28
- {"name": "A30", "fp16_tflops": 330, "memory_gb": 24, "memory_bandwidth_gbps": 933},
29
- {"name": "L40", "fp16_tflops": 181, "memory_gb": 48, "memory_bandwidth_gbps": 864},
30
- {"name": "L40s", "fp16_tflops": 362, "memory_gb": 48, "memory_bandwidth_gbps": 864},
31
- {"name": "A100 40 GB", "fp16_tflops": 312, "memory_gb": 40, "memory_bandwidth_gbps": 1555},
32
- {"name": "A100 40 GB SXM", "fp16_tflops": 312, "memory_gb": 40, "memory_bandwidth_gbps": 1555},
33
- {"name": "A100 80 GB PCIe", "fp16_tflops": 312, "memory_gb": 80, "memory_bandwidth_gbps": 1935},
34
- {"name": "A100 80 GB SXM", "fp16_tflops": 312, "memory_gb": 80, "memory_bandwidth_gbps": 2039},
35
- {"name": "H100 PCIe", "fp16_tflops": 1513, "memory_gb": 80, "memory_bandwidth_gbps": 2000},
36
- {"name": "H100 SXM", "fp16_tflops": 1979, "memory_gb": 80, "memory_bandwidth_gbps": 3350},
37
- {"name": "H100 NVL", "fp16_tflops": 3958, "memory_gb": 188, "memory_bandwidth_gbps": 7800}
38
- # Add or comment out GPU types as needed
39
- ]
40
 
41
- model_specs = [
42
- {"name": "Llama-3-8B", "params_billion": 8, "d_model": 4096, "n_heads": 32, "n_layers": 32, "max_context_window": 8192, "d_head": 128},
43
- {"name": "Llama-3-70B", "params_billion": 70, "d_model": 8192, "n_heads": 64, "n_layers": 80, "max_context_window": 8192, "d_head": 128},
44
- {"name": "Llama-3.1-8B", "params_billion": 8, "d_model": 4096, "n_heads": 32, "n_layers": 32, "max_context_window": 131072, "d_head": 128},
45
- {"name": "Llama-3.1-70B", "params_billion": 70, "d_model": 8192, "n_heads": 64, "n_layers": 80, "max_context_window": 131072, "d_head": 128},
46
- {"name": "Mistral-7B-v0.3", "params_billion": 7, "d_model": 4096, "n_heads": 32, "n_layers": 32, "max_context_window": 32768, "d_head": 128},
47
- {"name": "Falcon-7B", "params_billion": 7, "d_model": 4544, "n_heads": 71, "n_layers": 32, "max_context_window": 2048, "d_head": 64},
48
- {"name": "Falcon-40B", "params_billion": 40, "d_model": 8192, "n_heads": 128, "n_layers": 60, "max_context_window": 2048, "d_head": 64},
49
- {"name": "Falcon-180B", "params_billion": 180, "d_model": 14848, "n_heads": 232, "n_layers": 80, "max_context_window": 2048, "d_head": 64}
50
- # Add or comment out model specifications as needed
51
- ]
52
 
53
- BYTES_IN_GB = 1_073_741_824 # 1 GB = 1,073,741,824 bytes
54
-
55
- def estimate_llm_capacity_and_latency(model_name, gpu_name, num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_window):
56
- def calc_kv_cache_size_per_token(n_layers, d_model):
57
- return 2 * 2 * n_layers * d_model / BYTES_IN_GB # GB/token
58
-
59
- def calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window):
60
- kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
61
- target_gpu_mem = kv_cache_size_per_token * avg_context_window * n_concurrent_request + model_spec["params_billion"] * 2
62
- return target_gpu_mem
63
-
64
- print(f"\n******************** Estimate LLM Memory Footprint ********************")
65
- memory_footprint_table = []
66
- for model_spec in model_specs:
67
- kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
68
- memory_footprint = calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window)
69
- memory_footprint_table.append([model_spec['name'], f"{kv_cache_size_per_token:.6f} GiB/token", f"{memory_footprint:.2f} GB"])
70
- print(tabulate(memory_footprint_table, headers=['Model', 'KV Cache Size per Token', 'Memory Footprint'], tablefmt='orgtbl'))
71
-
72
- def calc_kv_cache_tokens(num_gpu, gpu_memory_gb, model_params_billion, kv_cache_size):
73
- result = (num_gpu * gpu_memory_gb - 2 * model_params_billion) / kv_cache_size
74
- return result if result >= 0 else "OOM"
75
-
76
- def calc_prefill_time_per_token(num_gpu, model_params_billion, fp16_tflops):
77
- result = (2 * model_params_billion / num_gpu) / fp16_tflops
78
- return result if result >= 0 else "OOM"
79
-
80
- def calc_generation_time_per_token(num_gpu, model_params_billion, memory_bandwidth_gbps):
81
- result = (2 * model_params_billion / num_gpu) / memory_bandwidth_gbps * 1000
82
- return result if result >= 0 else "OOM"
83
-
84
- def calc_estimated_response_time(prefill_time, generation_time, prompt_size, response_size):
85
- if isinstance(prefill_time, str) or isinstance(generation_time, str): # Check if any are "NA"
86
- return "OOM"
87
- return (prompt_size * prefill_time + response_size * generation_time) / 1000 # convert ms to seconds
88
-
89
- print(f"\n******************** Estimate LLM Capacity and Latency ******************** ")
90
- capacity_latency_table = []
91
- for model in model_specs:
92
- # print(f"Model: {model['name']} ({model['params_billion']}B parameters)")
93
- kv_cache_size = calc_kv_cache_size_per_token(model['n_layers'], model['d_model'])
94
- for gpu in gpu_specs:
95
- kv_cache_tokens = calc_kv_cache_tokens(num_gpu, gpu['memory_gb'], model['params_billion'], kv_cache_size)
96
- prefill_time_per_token = calc_prefill_time_per_token(num_gpu, model['params_billion'], gpu['fp16_tflops'])
97
- generation_time_per_token = calc_generation_time_per_token(num_gpu, model['params_billion'], gpu['memory_bandwidth_gbps'])
98
- estimated_response_time = calc_estimated_response_time(prefill_time_per_token, generation_time_per_token, prompt_size, response_size)
99
- capacity_latency_table.append([model['name'], gpu['name'], f"{kv_cache_tokens}", f"{prefill_time_per_token:.3f} ms", f"{generation_time_per_token:.3f} ms", f"{estimated_response_time:.1f} s"])
100
- print(tabulate(capacity_latency_table, headers=['Model', 'GPU', 'KV Cache Tokens', 'Prefill Time', 'Generation Time', 'Estimated Response Time'], tablefmt='orgtbl'))
101
-
102
- def generate_output(model_name, gpu_name, kv_cache_tokens, prefill_time, generation_time, estimated_response_time):
103
- return {
104
- "Model": model_name,
105
- "GPU": gpu_name,
106
- "KV Cache Tokens": str(kv_cache_tokens),
107
- "Prefill Time (ms)": f"{prefill_time:.3f}",
108
- "Generation Time (ms)": f"{generation_time:.3f}",
109
- "Estimated Response Time (s)": f"{estimated_response_time:.1f}"
110
- }
111
 
112
  with gr.Blocks() as demo:
113
- gr.Markdown("# Estimate LLM Capacity and Latency")
114
 
115
- num_gpu = gr.Number(label="Number of GPUs", value=1)
116
- prompt_size = gr.Slider(minimum=1, maximum=8192, label="Prompt Size (tokens)", value=4096)
117
- response_size = gr.Slider(minimum=1, maximum=8192, label="Response Size (tokens)", value=256)
118
- n_concurrent_request = gr.Slider(minimum=1, maximum=100, label="Concurrent Requests", value=10)
119
- avg_context_window = gr.Slider(minimum=1, maximum=131072, label="Average Context Window", value=1024)
120
 
121
- submit_button = gr.Button("Estimate")
122
 
123
- table = gr.Table()
124
 
125
  submit_button.click(
126
- fn=lambda num_gpu=num_gpu, prompt_size=prompt_size, response_size=response_size,
127
- n_concurrent_request=n_concurrent_request, avg_context_window=avg_context_window:
128
- estimate_llm_capacity_and_latency(None, None, num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_window),
129
- inputs=[num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_window],
 
130
  outputs=[table]
131
  )
132
 
 
1
  import gradio as gr
2
  import argparse
 
3
 
4
  def main():
5
+ parser = argparse.ArgumentParser(description='Estimare capacità e latenza di un modello LLM')
6
+ parser.add_argument('--gpu', type=str, default='A100 80GB', help='Tipo di GPU')
7
+ parser.add_argument('--model', type=str, default='Llama-3-70B', help='Nome del modello')
8
+ parser.add_argument('--prompt_size', type=int, default=4096, help='Dimensione della promessa in token')
9
+ parser.add_argument('--response_size', type=int, default=256, help='Dimensione della risposta in token')
10
+ parser.add_argument('--concurrent_requests', type=int, default=10, help='Numero di richieste concorrenti')
11
 
12
  args = parser.parse_args()
13
 
14
+ gpu_specs = {
15
+ 'A100 80GB': {'tflops': 312, 'memory_gb': 80, 'bandwidth': 1935},
16
+ 'H100 SXM': {'tflops': 1979, 'memory_gb': 80, 'bandwidth': 3350},
17
+ }
 
18
 
19
+ model_specs = {
20
+ 'Llama-3-70B': {'params_billion': 70, 'd_model': 8192, 'n_layers': 80},
21
+ 'Llama-3-8B': {'params_billion': 8, 'd_model': 4096, 'n_layers': 32},
22
+ }
23
 
24
+ def estimate_llm_capacity(model_name, gpu_name, prompt_size, response_size, concurrent_requests):
25
+ gpu = gpu_specs[gpu_name]
26
+ model = model_specs[model_name]
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ kv_cache_tokens = (gpu['tflops'] * concurrent_requests) // (model['params_billion'] * 2)
29
+ prefill_time_ms = (model['params_billion'] * 2) / (gpu['tflops'] * concurrent_requests) * 1000
30
+ generation_time_ms = (model['params_billion'] * 2) / (gpu['bandwidth'] * concurrent_requests) * 1000
31
+ estimated_response_time = (prompt_size * prefill_time_ms + response_size * generation_time_ms) / 1000
 
 
 
 
 
 
 
32
 
33
+ return f"""
34
+ Modello: {model_name}
35
+ GPU: {gpu_name}
36
+ KV Cache Tokens: {kv_cache_tokens:.0f}
37
+ Prefill Time: {prefill_time_ms:.2f} ms
38
+ Generation Time: {generation_time_ms:.2f} ms
39
+ Estimated Response Time: {estimated_response_time:.2f} s
40
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  with gr.Blocks() as demo:
43
+ gr.Markdown("# Estimare Capacità e Latenza LLM")
44
 
45
+ gpu_dropdown = gr.Dropdown(choices=['A100 80GB', 'H100 SXM'], label="Tipo di GPU", value='A100 80GB')
46
+ model_dropdown = gr.Dropdown(choices=['Llama-3-70B', 'Llama-3-8B'], label="Nome del Modello", value='Llama-3-70B')
47
+ prompt_size = gr.Slider(minimum=1, maximum=8192, label="Dimensione della Promessa", value=4096)
48
+ response_size = gr.Slider(minimum=1, maximum=8192, label="Dimensione della Risposta", value=256)
49
+ concurrent_requests = gr.Slider(minimum=1, maximum=100, label="Richieste Concorrenti", value=10)
50
 
51
+ table = gr.Textbox()
52
 
53
+ submit_button = gr.Button("Estimare")
54
 
55
  submit_button.click(
56
+ fn=lambda gpu=gpu_dropdown.value, model=model_dropdown.value,
57
+ prompt_size=prompt_size.value, response_size=response_size.value,
58
+ concurrent_requests=concurrent_requests.value:
59
+ estimate_llm_capacity(model, gpu, prompt_size, response_size, concurrent_requests),
60
+ inputs=[gpu_dropdown, model_dropdown, prompt_size, response_size, concurrent_requests],
61
  outputs=[table]
62
  )
63