Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,24 @@ from tabulate import tabulate
|
|
5 |
def greet(name):
|
6 |
return f"Ciao, {name}!"
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Move estimate_capacity_latency outside of main()
|
9 |
def estimate_capacity_latency(model, gpu):
|
10 |
kv_cache_tokens = calc_kv_cache_tokens(num_gpu, gpu['memory_gb'], model['params_billion'], kv_cache_size_per_token)
|
@@ -13,6 +31,29 @@ def estimate_capacity_latency(model, gpu):
|
|
13 |
estimated_response_time = calc_estimated_response_time(prefill_time_per_token, generation_time_per_token, prompt_size, response_size)
|
14 |
return f"{prefill_time_per_token:.3f} ms", f"{generation_time_per_token:.3f} ms", f"{estimated_response_time:.1f} s"
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def main():
|
17 |
parser = argparse.ArgumentParser(description='Your script description')
|
18 |
parser.add_argument('-g', '--num_gpu', type=int, default=1, help='Number of GPUs')
|
@@ -62,6 +103,7 @@ def main():
|
|
62 |
]
|
63 |
|
64 |
BYTES_IN_GB = 1_073_741_824 # 1 GB = 1,073,741,824 bytes
|
|
|
65 |
def calc_kv_cache_size_per_token(n_layers, d_model):
|
66 |
return 2 * 2 * n_layers * d_model / BYTES_IN_GB # GB/token
|
67 |
|
@@ -70,6 +112,7 @@ def main():
|
|
70 |
target_gpu_mem = kv_cache_size_per_token * avg_context_window * n_concurrent_request + model_spec["params_billion"] * 2
|
71 |
return target_gpu_mem
|
72 |
|
|
|
73 |
def calc_kv_cache_tokens(num_gpu, gpu_memory_gb, model_params_billion, kv_cache_size):
|
74 |
result = (num_gpu * gpu_memory_gb - 2 * model_params_billion) / kv_cache_size
|
75 |
return result if result >= 0 else "OOM"
|
@@ -106,28 +149,4 @@ def main():
|
|
106 |
print(tabulate(capacity_latency_table, headers=['Model', 'GPU', 'Prefill Time', 'Generation Time', 'Estimated Response Time'], tablefmt='orgtbl'))
|
107 |
|
108 |
if __name__ == '__main__':
|
109 |
-
main()
|
110 |
-
|
111 |
-
# Modify create_gradio_interface to use the global estimate_capacity_latency
|
112 |
-
def create_gradio_interface():
|
113 |
-
demo = gr.Interface(
|
114 |
-
fn=estimate_capacity_latency,
|
115 |
-
inputs=[
|
116 |
-
gr.Textbox(label="Model Name"),
|
117 |
-
gr.Dropdown(choices=[gpu['name'] for gpu in gpu_specs], label="GPU Type")
|
118 |
-
],
|
119 |
-
outputs=[
|
120 |
-
gr.HTML(label="Capacity and Latency Table")
|
121 |
-
],
|
122 |
-
title="LLM Capacity and Latency Estimator",
|
123 |
-
description="Estimate LLM capacity and latency based on model and GPU specifications.",
|
124 |
-
theme="minimal"
|
125 |
-
)
|
126 |
-
|
127 |
-
return demo
|
128 |
-
|
129 |
-
# Create the Gradio interface
|
130 |
-
gr_interface = create_gradio_interface()
|
131 |
-
|
132 |
-
# Start the interface
|
133 |
-
gr_interface.launch()
|
|
|
5 |
def greet(name):
|
6 |
return f"Ciao, {name}!"
|
7 |
|
8 |
+
# Define all helper functions here
|
9 |
+
def calc_kv_cache_tokens(num_gpu, gpu_memory_gb, model_params_billion, kv_cache_size):
|
10 |
+
result = (num_gpu * gpu_memory_gb - 2 * model_params_billion) / kv_cache_size
|
11 |
+
return result if result >= 0 else "OOM"
|
12 |
+
|
13 |
+
def calc_prefill_time_per_token(num_gpu, model_params_billion, fp16_tflops):
|
14 |
+
result = (2 * model_params_billion / num_gpu) / fp16_tflops
|
15 |
+
return result if result >= 0 else "OOM"
|
16 |
+
|
17 |
+
def calc_generation_time_per_token(num_gpu, model_params_billion, memory_bandwidth_gbps):
|
18 |
+
result = (2 * model_params_billion / num_gpu) / memory_bandwidth_gbps * 1000
|
19 |
+
return result if result >= 0 else "OOM"
|
20 |
+
|
21 |
+
def calc_estimated_response_time(prefill_time, generation_time, prompt_size, response_size):
|
22 |
+
if isinstance(prefill_time, str) or isinstance(generation_time, str): # Check if any are "NA"
|
23 |
+
return "OOM"
|
24 |
+
return (prompt_size * prefill_time + response_size * generation_time) / 1000 # convert ms to seconds
|
25 |
+
|
26 |
# Move estimate_capacity_latency outside of main()
|
27 |
def estimate_capacity_latency(model, gpu):
|
28 |
kv_cache_tokens = calc_kv_cache_tokens(num_gpu, gpu['memory_gb'], model['params_billion'], kv_cache_size_per_token)
|
|
|
31 |
estimated_response_time = calc_estimated_response_time(prefill_time_per_token, generation_time_per_token, prompt_size, response_size)
|
32 |
return f"{prefill_time_per_token:.3f} ms", f"{generation_time_per_token:.3f} ms", f"{estimated_response_time:.1f} s"
|
33 |
|
34 |
+
def create_gradio_interface():
|
35 |
+
demo = gr.Interface(
|
36 |
+
fn=estimate_capacity_latency,
|
37 |
+
inputs=[
|
38 |
+
gr.Textbox(label="Model Name"),
|
39 |
+
gr.Dropdown(choices=[gpu['name'] for gpu in gpu_specs], label="GPU Type")
|
40 |
+
],
|
41 |
+
outputs=[
|
42 |
+
gr.HTML(label="Capacity and Latency Table")
|
43 |
+
],
|
44 |
+
title="LLM Capacity and Latency Estimator",
|
45 |
+
description="Estimate LLM capacity and latency based on model and GPU specifications.",
|
46 |
+
theme="minimal"
|
47 |
+
)
|
48 |
+
|
49 |
+
return demo
|
50 |
+
|
51 |
+
# Create the Gradio interface
|
52 |
+
gr_interface = create_gradio_interface()
|
53 |
+
|
54 |
+
# Start the interface
|
55 |
+
gr_interface.launch()
|
56 |
+
|
57 |
def main():
|
58 |
parser = argparse.ArgumentParser(description='Your script description')
|
59 |
parser.add_argument('-g', '--num_gpu', type=int, default=1, help='Number of GPUs')
|
|
|
103 |
]
|
104 |
|
105 |
BYTES_IN_GB = 1_073_741_824 # 1 GB = 1,073,741,824 bytes
|
106 |
+
|
107 |
def calc_kv_cache_size_per_token(n_layers, d_model):
|
108 |
return 2 * 2 * n_layers * d_model / BYTES_IN_GB # GB/token
|
109 |
|
|
|
112 |
target_gpu_mem = kv_cache_size_per_token * avg_context_window * n_concurrent_request + model_spec["params_billion"] * 2
|
113 |
return target_gpu_mem
|
114 |
|
115 |
+
# ... rest of the code remains the same ...
|
116 |
def calc_kv_cache_tokens(num_gpu, gpu_memory_gb, model_params_billion, kv_cache_size):
|
117 |
result = (num_gpu * gpu_memory_gb - 2 * model_params_billion) / kv_cache_size
|
118 |
return result if result >= 0 else "OOM"
|
|
|
149 |
print(tabulate(capacity_latency_table, headers=['Model', 'GPU', 'Prefill Time', 'Generation Time', 'Estimated Response Time'], tablefmt='orgtbl'))
|
150 |
|
151 |
if __name__ == '__main__':
|
152 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|