Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import time | |
from os import path | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
import gradio as gr | |
import torch | |
from diffusers import FluxPipeline | |
torch.backends.cuda.matmul.allow_tf32 = True | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
# Define example prompts | |
example_prompts = [ | |
"A cyberpunk cityscape at night with neon lights reflecting in puddles, towering skyscrapers and flying cars", | |
"An ethereal fairy with translucent iridescent wings standing in an enchanted forest with glowing mushrooms and floating light particles", | |
"A majestic dragon soaring through stormy clouds above jagged mountain peaks as lightning strikes in the background", | |
"A futuristic space station orbiting a vibrant nebula with multiple colorful ringed planets visible through a massive observation window", | |
"An underwater scene of an ancient lost city with ornate temples and statues covered in bioluminescent coral and swimming sea creatures" | |
] | |
# Custom CSS for neon theme | |
css = """ | |
.neon-container { | |
background: linear-gradient(to right, #000428, #004e92); | |
border-radius: 16px; | |
box-shadow: 0 0 15px #00f3ff, 0 0 25px #00f3ff; | |
} | |
.neon-title { | |
text-shadow: 0 0 5px #fff, 0 0 10px #fff, 0 0 15px #0073e6, 0 0 20px #0073e6, 0 0 25px #0073e6; | |
color: #ffffff; | |
font-weight: bold !important; | |
} | |
.neon-text { | |
color: #00ff9d; | |
text-shadow: 0 0 5px #00ff9d; | |
} | |
.neon-button { | |
box-shadow: 0 0 5px #ff00dd, 0 0 10px #ff00dd !important; | |
background: linear-gradient(90deg, #ff00dd, #8b00ff) !important; | |
border: none !important; | |
color: white !important; | |
font-weight: bold !important; | |
} | |
.neon-button:hover { | |
box-shadow: 0 0 10px #ff00dd, 0 0 20px #ff00dd !important; | |
} | |
.neon-input { | |
border: 1px solid #00f3ff !important; | |
box-shadow: 0 0 5px #00f3ff !important; | |
} | |
.neon-slider > div { | |
background: linear-gradient(90deg, #00ff9d, #00f3ff) !important; | |
} | |
.neon-slider > div > div { | |
background: #ff00dd !important; | |
box-shadow: 0 0 5px #ff00dd !important; | |
} | |
.neon-card { | |
background-color: rgba(0, 0, 0, 0.7) !important; | |
border: 1px solid #00f3ff !important; | |
box-shadow: 0 0 10px #00f3ff !important; | |
padding: 16px !important; | |
border-radius: 8px !important; | |
} | |
.neon-example { | |
background: rgba(0, 0, 0, 0.5) !important; | |
border: 1px solid #00ff9d !important; | |
border-radius: 8px !important; | |
padding: 8px !important; | |
color: #00ff9d !important; | |
box-shadow: 0 0 5px #00ff9d !important; | |
margin: 4px !important; | |
cursor: pointer !important; | |
} | |
.neon-example:hover { | |
box-shadow: 0 0 10px #00ff9d, 0 0 15px #00ff9d !important; | |
background: rgba(0, 255, 157, 0.2) !important; | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
with gr.Blocks(elem_classes=["neon-container"]): | |
gr.Markdown( | |
""" | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<h1 style="font-size: 3rem; font-weight: 700; margin-bottom: 1rem; display: contents;" class="neon-title">FLUX: Fast & Furious</h1> | |
<p style="font-size: 1.2rem; margin-bottom: 1.5rem;" class="neon-text">AutoML team from ByteDance</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3, elem_classes=["neon-card"]): | |
with gr.Group(): | |
prompt = gr.Textbox( | |
label="Your Image Description", | |
placeholder="E.g., A serene landscape with mountains and a lake at sunset", | |
lines=3, | |
elem_classes=["neon-input"] | |
) | |
# Examples section | |
gr.Markdown('<p class="neon-text">Click on any example to use it:</p>') | |
with gr.Row(): | |
example_boxes = [gr.Button(ex[:40] + "...", elem_classes=["neon-example"]) for ex in example_prompts] | |
# Connect example buttons to the prompt textbox | |
for i, example_btn in enumerate(example_boxes): | |
example_btn.click( | |
fn=lambda x=example_prompts[i]: x, | |
outputs=prompt | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Group(): | |
with gr.Row(): | |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024, | |
elem_classes=["neon-slider"]) | |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024, | |
elem_classes=["neon-slider"]) | |
with gr.Row(): | |
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8, | |
elem_classes=["neon-slider"]) | |
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5, | |
elem_classes=["neon-slider"]) | |
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0, | |
elem_classes=["neon-input"]) | |
generate_btn = gr.Button("Generate Image", variant="primary", scale=1, elem_classes=["neon-button"]) | |
with gr.Column(scale=4, elem_classes=["neon-card"]): | |
output = gr.Image(label="Your Generated Image") | |
gr.Markdown( | |
""" | |
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px;" class="neon-card"> | |
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;" class="neon-text">How to Use</h2> | |
<ol style="padding-left: 1.5rem; color: #00f3ff;"> | |
<li>Enter a detailed description of the image you want to create.</li> | |
<li>Or click one of our exciting example prompts above!</li> | |
<li>Adjust advanced settings if desired (tap to expand).</li> | |
<li>Tap "Generate Image" and wait for your creation!</li> | |
</ol> | |
<p style="margin-top: 1rem; font-style: italic; color: #ff00dd;">Tip: Be specific in your description for best results!</p> | |
</div> | |
""" | |
) | |
def process_image(height, width, steps, scales, prompt, seed): | |
global pipe | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
return pipe( | |
prompt=[prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scales), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
generate_btn.click( | |
process_image, | |
inputs=[height, width, steps, scales, prompt, seed], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch() |