chatmlTest / model /trainer.py
fangshengren's picture
Upload 59 files
f4fac26 verified
raw
history blame contribute delete
25.3 kB
import signal
import sys
import os
import time
from typing import Union
import platform
from psutil import virtual_memory, cpu_count
import numpy as np
from torch.utils.data import DataLoader
import torch
from rich.progress import Progress, TextColumn, BarColumn, TimeElapsedColumn, TimeRemainingColumn
from transformers import PreTrainedTokenizerFast
from torch_optimizer import Adafactor
# import accelerate
from accelerate import Accelerator
from accelerate.utils import set_seed
# import 自定义类和函数
from model.chat_model import TextToTextModel
from utils.logger import Logger
from model.dataset import MyDataset
from config import TrainConfig, T5ModelConfig
from utils.functions import (
get_bleu4_score,
save_model_config,
get_free_space_of_disk,
my_average,
get_path_of_suffix_files,
get_T5_config,
)
class ChatTrainer:
def __init__(self, train_config: TrainConfig, model_config: T5ModelConfig, ) -> None:
self.train_config = train_config
self.model_config = model_config
# file_name=None会自动生成以当前日期命名的log文件名
self.logger = Logger('chat_trainer', std_out=True, save2file=True, file_name=None)
self.model = None
self.accelerator = None
signal.signal(signal.SIGINT, self.process_exit_handler)
self.is_win_platform = True if platform.system().lower() == 'windows' else False
torch.manual_seed(train_config.seed)
torch.cuda.manual_seed_all(train_config.seed)
def process_exit_handler(self, signal_received, frame) -> None:
'''
进程退出时的操作,保存模型
'''
if self.accelerator and self.model:
ask = "you are pressed `ctrl+c`, do you want to save checkpoint? Yes (y) or No (n)"
self.accelerator.print(ask)
ins = input()
if ins.lower() in ('yes', 'y'):
suffix = 'exit_save_{}'.format(str(time.strftime('%Y%m%d%H%M%S', time.localtime())))
self.accelerator.wait_for_everyone()
self.accelerator.save_state(output_dir=self.train_config.train_state_dir)
self.accelerator.print('model ckeck point has been saved in {}'.format(self.train_config.train_state_dir))
sys.exit(0)
else:
print('process not in trainingg, exit.')
sys.exit(0)
def save_model(self, suffix: Union[str, int]) -> None:
'''保存模型到文件
注意:save_model不能放到is_main_process里面
e.g:
>>> self.save_model(epoch) # 在这里使用
>>> if accelerator.is_main_process:
>>> do_somthing()
'''
if self.model and self.accelerator:
# 先wait_for_everyone,再保存
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
unwrap_model = self.accelerator.unwrap_model(self.model)
model_dict = self.accelerator.get_state_dict(unwrap_model)
torch.save(model_dict, self.train_config.model_file.format(suffix))
def delete_early_checkpoint(self, epoch: int, keep_latest_n: int=3,) -> None:
'''
删除最早的模型,最保留最近keep_latest_n个模型文件
'''
model_save_path = self.train_config.model_file
model_save_path = model_save_path.replace('\\', '/') # 针对win的路径,将\替换为/
model_save_path = '/'.join(model_save_path.split('/')[0: -1]) # 删除末尾文件名后缀
model_files = get_path_of_suffix_files(model_save_path, suffix='.bin', with_create_time=True)
# 进程异常退出保存模型文件不在删除范围
train_save_model_fils = []
for item in model_files:
if 'exit_save' not in item[0]:
# 大于当前epoch的文件不不删除
f_epoch = int(item[0].split('.')[-2])
if epoch >= f_epoch:
print(epoch, f_epoch, item)
train_save_model_fils.append(item)
train_save_model_fils.sort(key=lambda x: x[1]) # 按照时间从小到大排序
if len(train_save_model_fils) <= keep_latest_n:
return
to_delete_files = train_save_model_fils[0: -keep_latest_n]
for item in to_delete_files:
os.remove(item[0])
def train(self, is_keep_training: bool=False, is_finetune: bool=False) -> None:
'''
is_keep_training: 是否从断点处加载状态继续训练
is_finetune: 是否微调,微调的话可能需要冻结部分参数
'''
log = self.logger
train_config = self.train_config
save_steps = self.train_config.save_steps
logging_steps = self.train_config.logging_steps
# 梯度累计的步数
accumulation_steps = train_config.gradient_accumulation_steps
set_seed(train_config.seed)
accelerator = Accelerator(
mixed_precision=train_config.mixed_precision, # 混合精度
gradient_accumulation_steps=accumulation_steps, # 梯度累积
project_dir=train_config.train_state_dir,
)
# 根据剩余内存大小决定是否完全加载数据集到内存中
unuse_mem = virtual_memory().available / (1024 ** 3) # 单位:GB
unuse_disk = get_free_space_of_disk('./')
# 剩余内存≥48GB将把数据集留在内存中,因为2个显卡+全全部装载900多万的训练数据到内存需要大概43GB的CPU内存
# 如果不放在内存中,将会使用迭代器生成数据,CPU 内存小于16GB也可以运行,但是不支持顺序打乱。
# 多GPU keep_in_memory必须=True,否则无法进行分布式训练
keep_in_memory = True if unuse_mem >= 48.0 or torch.cuda.device_count() >= 2 else False
if accelerator.is_main_process:
log.info('cpu memory available: {:.2f} GB, disk space available: {:.2f} GB, keep dataset in memory: {}.'\
.format(unuse_mem, unuse_disk, keep_in_memory), save_to_file=True)
log.info('operation: {}, keep training: {}, loading datasets ...'.format('finetune' if is_finetune else 'train', is_keep_training))
# args for dataloader
num_workers = 0
# if not self.is_win_platform:
# cpu_cnt = cpu_count(logical=False)
# gpu_cnt = torch.cuda.device_count()
# if cpu_cnt >= 8 * gpu_cnt:
# # num_workers = 4 x number of available GPUs
# num_workers = int(4 * gpu_cnt)
# else:
# num_workers = int(cpu_cnt // 2)
train_dataset = MyDataset(
parquet_file=train_config.train_file,
tokenizer_dir=train_config.tokenizer_dir,
keep_in_memory=keep_in_memory,
max_seq_len=train_config.max_seq_len,
)
valid_dataset = MyDataset(
parquet_file=train_config.validation_file,
tokenizer_dir=train_config.tokenizer_dir,
keep_in_memory=keep_in_memory,
max_seq_len=train_config.max_seq_len,
)
batch_size = train_config.batch_size_per_gpu
train_dataloader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=train_dataset.collate_fn,
pin_memory=False,
num_workers=num_workers, #设置>1会导致cpu内存缓慢增涨,最后OOM,后面再研究为什么,num_workers=4,一个epoch只减少30分钟
)
valid_dataloader = DataLoader(
valid_dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=valid_dataset.collate_fn,
pin_memory=False,
num_workers=num_workers,
)
device = accelerator.device
log.info('using device: {} '.format(str(device)), save_to_file=True)
# T5: All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
tokenizer = train_dataset.tokenizer
decoder_start_token_id = tokenizer.pad_token_id
# for t5, set decoder_start_token_id = pad_token_id
t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=decoder_start_token_id, eos_token_id=tokenizer.eos_token_id)
model = TextToTextModel(t5_config)
# 微调加载的模型并冻结embedding和encoder
if is_finetune:
model.load_state_dict(torch.load(train_config.finetune_from_ckp_file))
# print(model)
layers_to_freeze = [model.shared, model.encoder]
for layer in layers_to_freeze:
for param in layer.parameters():
param.requires_grad = False
# 保存模型配置,方便修改配置后恢复
save_model_config(t5_config.to_diff_dict(), train_config.model_config_file)
# T5训练,论文推荐使用Adafactor
optimizer = Adafactor(params=model.parameters(), lr=train_config.learn_rate)
# 获取当前机器有多少个GPU,默认全部使用
num_gpus_used = accelerator.state.num_processes
# 单机多卡,每个step总共的batch_size = batch_size_per_gpu * num_gpus_used
# total_batch_size 初始化为batch_size_per_gpu真的只有CPU的情况
total_batch_size = train_config.batch_size_per_gpu
if num_gpus_used >= 1:
total_batch_size = num_gpus_used * train_config.batch_size_per_gpu
steps_per_epoch = int(np.ceil(len(train_dataset) // total_batch_size))
eval_steps = int(np.ceil(len(valid_dataset) // total_batch_size))
if accelerator.is_main_process:
log.info('train dataset size: {}, steps per epoch:{}; validation dataset size: {}, steps per validation: {}; datalodater num_workers: {}.'\
.format(len(train_dataset), steps_per_epoch, len(valid_dataset), eval_steps, num_workers), save_to_file=True)
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer=optimizer,
max_lr=train_config.div_factor * train_config.learn_rate,
epochs=train_config.epochs,
steps_per_epoch=int(np.ceil( len(train_dataset) / (batch_size * accumulation_steps) )), # 梯度累积相当于增大了batch_size
div_factor=train_config.div_factor,
cycle_momentum=False,
)
model, optimizer, lr_scheduler, train_dataloader, valid_dataloader = accelerator.prepare(
model,
optimizer,
lr_scheduler,
train_dataloader,
valid_dataloader,
)
if is_keep_training:
accelerator.load_state(input_dir=train_config.train_state_dir)
accelerator.register_for_checkpointing(lr_scheduler)
self.model = model
self.accelerator = accelerator
best_bleu4 = 0.0
best_epoch = 0
epoch_loss_list = []
# 添加进度条,只在主进程更新
if accelerator.is_main_process:
progress = Progress(TextColumn("[progress.description]{task.description}"),
BarColumn(),
TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
TimeRemainingColumn(),
TimeElapsedColumn(),
TextColumn("[bold blue]{task.fields[show_info]}"),
refresh_per_second=1, # 每1秒钟更新一次,不要频繁更新
)
epoch_progress = progress.add_task(description='epoch: ', show_info='', total=train_config.epochs)
steps_progress = progress.add_task(description='steps: ', show_info='', \
total=np.ceil(steps_per_epoch / logging_steps))
eval_progress = progress.add_task(description='evaluate: ', show_info='', total=eval_steps, visible=False)
self.progress = progress
self.eval_progress = eval_progress
progress.start()
# end if
for epoch in range(train_config.epochs):
if accelerator.is_main_process:
epoch_show_txt = 'epoch: {}/{}, avg_loss: {:.6f}, best_epoch: {}, best_bleu: {}'.format(
epoch, train_config.epochs, my_average(epoch_loss_list), best_epoch, best_bleu4
)
progress.update(epoch_progress, show_info=epoch_show_txt)
progress.reset(steps_progress)
epoch_loss_list = []
model.train()
# torch.cuda.empty_cache()
for step, batch_data in enumerate(train_dataloader):
input_ids, input_mask = batch_data['input_ids'], batch_data['input_mask']
target_ids = batch_data['target_ids']
# for t5 model, all labels set to `-100` are ignored (masked)
target_ids[target_ids == decoder_start_token_id] = -100
outputs = model(
input_ids=input_ids,
attention_mask=input_mask,
labels=target_ids,
)
loss = outputs.loss.mean() / accumulation_steps
# attention here! loss.backward()
accelerator.backward(loss)
# 梯度累计
if (step + 1) % accumulation_steps == 0:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# 每隔save_steps步保存一次模型
if (step + 1) % save_steps == 0 or step == steps_per_epoch:
self.save_model('epoch_{}_latest'.format(epoch))
accelerator.save_state(output_dir=train_config.train_state_dir)
# ==================================以下记录loss到日志============================================
# 每n步更新一次,避免频繁的cpu-gpu数据复制
# 参考:https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-cpu-gpu-synchronization
if step % logging_steps == 0 or step == steps_per_epoch:
loss_cpu = loss.detach().item() * accumulation_steps
epoch_loss_list.append(loss_cpu)
info_txt = 'training loss: epoch:{}, step:{}, loss:{}, device:{}'.\
format(epoch, step, loss_cpu, str(accelerator.device))
log.info(info_txt, std_out=False, save_to_file=True) # 保存 loss 到文件
# 更新进度条
if accelerator.is_main_process:
step_show_txt = 'step: {}/{}, loss: {:.6f}'.format(step, steps_per_epoch, loss_cpu)
progress.advance(steps_progress, advance=1)
progress.update(steps_progress, show_info=step_show_txt)
# ==================================以上记录loss到日志============================================
# if step >= 20:break
# end for batch setps
model.eval()
cur_bleu4_score = self.evaluate(
model=model,
tokenizer=tokenizer,
valid_dataloader=valid_dataloader,
accelerator=accelerator,
eval_steps=eval_steps,
)
# save model
if cur_bleu4_score >= best_bleu4:
best_bleu4 = cur_bleu4_score
best_epoch = epoch
# 最多保存最近keep_latest_n_ckp个模型文件
# self.delete_early_checkpoint(epoch=epoch, keep_latest_n=train_config.keep_latest_n_ckp)
self.save_model('best')
accelerator.save_state(output_dir=train_config.train_state_dir)
# 每个epoch打印一下日志
if accelerator.is_main_process:
progress.advance(epoch_progress, advance=1)
info_txt = 'epoch log: epoch:{}, avg_loss:{}, cur_bleu4:{}, best_bleu4:{}, best_epoch:{}'.\
format(epoch, my_average(epoch_loss_list), cur_bleu4_score, best_bleu4, best_epoch)
# log.info(info_txt, std_out=True, save_to_file=True)
self.print_and_log(info_txt, accelerator)
def evaluate(self,
model: TextToTextModel,
tokenizer: PreTrainedTokenizerFast,
valid_dataloader: DataLoader,
accelerator: Accelerator,
eval_steps: int,
) -> float:
'''
评估,返回平均的bleu分数
'''
max_seq_len = self.train_config.max_seq_len
batch_decode = tokenizer.batch_decode
bleu4_scores = []
if accelerator.is_main_process:
self.progress.reset(self.eval_progress)
self.progress.update(self.eval_progress, visible=True)
with torch.no_grad():
for step, batch_data in enumerate(valid_dataloader):
if accelerator.is_main_process:
self.progress.advance(self.eval_progress, advance=1)
self.progress.update(self.eval_progress, show_info='step: {}/{}'.format(step, eval_steps))
input_ids, input_mask = batch_data['input_ids'], batch_data['input_mask']
target_ids = batch_data['target_ids']
outputs = accelerator.unwrap_model(model).my_generate(
input_ids=input_ids,
attention_mask=input_mask,
max_seq_len=max_seq_len,
)
# gather data from multi-gpus (used when in ddp mode)
outputs = accelerator.gather_for_metrics(outputs).detach().cpu().numpy()
target_ids = accelerator.gather_for_metrics(target_ids).detach().cpu().numpy()
outputs = batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False)
target_ids = batch_decode(target_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
# print(outputs, target_ids)
bleu4_scores = [get_bleu4_score(reference=target_ids[i], outputs=outputs[i]) for i in range(len(target_ids))]
bleu4_scores.extend(bleu4_scores)
# if step >= 5: break
avg_bleu4_score = my_average(bleu4_scores)
if accelerator.is_main_process:
self.progress.update(self.eval_progress, show_info='bleu4 score: {}'.format(avg_bleu4_score))
self.progress.update(self.eval_progress, visible=False)
return avg_bleu4_score
def test(self, best_epoch: int=0) -> None:
'''
'''
import os
train_config = self.train_config
log = self.logger
# args for dataloader
num_workers = 0 if self.is_win_platform else 4
test_dataset = MyDataset(
parquet_file=train_config.train_file,
tokenizer_dir=train_config.tokenizer_dir,
keep_in_memory=False if self.is_win_platform else True,
max_seq_len=train_config.max_seq_len,
)
test_dataloader = DataLoader(
test_dataset,
batch_size=train_config.batch_size_per_gpu,
shuffle=False,
collate_fn=test_dataset.collate_fn,
pin_memory=False,
num_workers=num_workers,
)
log.info('test dataset size: {}.'.format(len(test_dataset)), save_to_file=True)
set_seed(train_config.seed)
accelerator = Accelerator(mixed_precision=train_config.mixed_precision)
device = accelerator.device
log.info('using device: {} '.format(str(device)), save_to_file=True)
# 获取当前运行使用了多少个GPU
num_gpus_used = accelerator.state.num_processes
# 单机多卡,每个step总共的batch_size = batch_size_per_gpu * num_gpus_used
# total_batch_size 初始化为batch_size_per_gpu真的只有CPU的情况
total_batch_size = train_config.batch_size_per_gpu
if num_gpus_used >= 1:
total_batch_size = num_gpus_used * train_config.batch_size_per_gpu
# T5: All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
tokenizer = test_dataset.tokenizer
model_file = train_config.model_file.format(best_epoch)
if os.path.isdir(model_file):
# 传入文件夹则 from_pretrained
model = TextToTextModel.from_pretrained(model_file)
else:
# load_state_dict
t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
model = TextToTextModel(t5_config)
model.load_state_dict(torch.load(model_file, map_location='cpu')) # set cpu for no exception
model, test_dataloader = accelerator.prepare(
model,
test_dataloader,
)
steps = int(np.ceil(len(test_dataset) // total_batch_size))
bleu4 = 0.0
bleu4_scores = []
batch_decode = tokenizer.batch_decode
max_seq_len = self.train_config.max_seq_len
model.eval()
if accelerator.is_main_process:
progress = Progress(TextColumn("[progress.description]{task.description}"),
BarColumn(),
TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
TimeRemainingColumn(),
TimeElapsedColumn(),
TextColumn("[bold blue]{task.fields[show_info]}"),
refresh_per_second=1.0,
)
steps_progress = progress.add_task(description='steps: ', show_info='', total=steps)
progress.start()
with torch.no_grad():
for step, batch_data in enumerate(test_dataloader):
if accelerator.is_main_process:
progress.advance(steps_progress, advance=1)
progress.update(steps_progress, show_info='step: {}/{}'.format(step, steps))
input_ids, input_mask = batch_data['input_ids'], batch_data['input_mask']
target_ids = batch_data['target_ids']
# s = time.time()
outputs = accelerator.unwrap_model(model).my_generate(
input_ids=input_ids,
attention_mask=input_mask,
max_seq_len=max_seq_len,
)
# accelerator.print('generate used: {}'.format(time.time() - s))
# gather data from multi-gpus (used when in ddp mode)
outputs = accelerator.gather_for_metrics(outputs).cpu().numpy()
target_ids = accelerator.gather_for_metrics(target_ids).cpu().numpy()
outputs = batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False)
target_ids = batch_decode(target_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
# print('outputs: {}'.format(outputs[0:5]))
# print('target_ids: {}'.format(target_ids[0:5]))
# print()
bleu4_scores = [get_bleu4_score(reference=target_ids[i], outputs=outputs[i]) for i in range(len(target_ids))]
bleu4_scores.extend(bleu4_scores)
# if step >= 10: break
avg_bleu4_score = my_average(bleu4_scores)
if accelerator.is_main_process:
progress.update(steps_progress, show_info='bleu4 score: {}'.format(avg_bleu4_score))
info_txt = 'test_dataset_size: {}, avg_bleu4_score:{}.'.format(len(test_dataset), avg_bleu4_score)
log.info(info_txt, save_to_file=True)
return avg_bleu4_score
def print_and_log(self, info: str, accelerator: Accelerator=None) -> None:
'''
使用accelerator.print, 否则多进程打印会异常
'''
if not accelerator:
print(info)
else:
accelerator.print(info)
self.logger.info(info, std_out=False, save_to_file=True)
if __name__ == '__main__':
# trainer = ChatTrainer()
train_config = TrainConfig()
model_config = T5ModelConfig()
chat_trainer = ChatTrainer(train_config=train_config, model_config=model_config)
chat_trainer.train()
# chat_trainer.test(best_epoch=0)