Spaces:
Running
Running
Upload 4 files
Browse files
README.md
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
---
|
2 |
title: Ai Text Detector
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
|
|
|
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
9 |
---
|
|
|
1 |
---
|
2 |
title: Ai Text Detector
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.10.0
|
8 |
+
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
from utils import clean_text
|
8 |
+
|
9 |
+
|
10 |
+
pipeline = pipeline(
|
11 |
+
task="text-classification",
|
12 |
+
model="fakespot-ai/roberta-base-ai-text-detection-v1",
|
13 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
14 |
+
token=os.environ.get("ACCESS_TOKEN")
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def predict(text):
|
19 |
+
cleaned_text = clean_text(text)
|
20 |
+
predictions = pipeline(cleaned_text, top_k=None)[0]
|
21 |
+
return {
|
22 |
+
p["label"]: p["score"] for p in predictions
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
demo = gr.Interface(
|
27 |
+
predict,
|
28 |
+
inputs=gr.Textbox(),
|
29 |
+
outputs=gr.Label(num_top_classes=2),
|
30 |
+
title="AI Text Detector"
|
31 |
+
)
|
32 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from html import unescape
|
3 |
+
|
4 |
+
|
5 |
+
def clean_text(t):
|
6 |
+
t = clean_markdown(t)
|
7 |
+
t = t.replace("\n"," ")
|
8 |
+
t = t.replace("\t"," ")
|
9 |
+
t = t.replace("^M"," ")
|
10 |
+
t = t.replace("\r"," ")
|
11 |
+
t = t.replace(" ,", ",")
|
12 |
+
t = re.sub(" +", " ", t)
|
13 |
+
return t
|
14 |
+
|
15 |
+
|
16 |
+
def clean_markdown(md_text):
|
17 |
+
# Remove code blocks
|
18 |
+
md_text = re.sub(r'```.*?```', '', md_text, flags=re.DOTALL)
|
19 |
+
# Remove inline code
|
20 |
+
md_text = re.sub(r'`[^`]*`', '', md_text)
|
21 |
+
# Remove images
|
22 |
+
md_text = re.sub(r'!\[.*?\]\(.*?\)', '', md_text)
|
23 |
+
# Remove links but keep link text
|
24 |
+
md_text = re.sub(r'\[([^\]]+)\]\(.*?\)', r'\1', md_text)
|
25 |
+
# Remove bold and italic (groups of *, _)
|
26 |
+
md_text = re.sub(r'(\*\*|__)(.*?)\1', r'\2', md_text)
|
27 |
+
md_text = re.sub(r'(\*|_)(.*?)\1', r'\2', md_text)
|
28 |
+
# Remove headings
|
29 |
+
md_text = re.sub(r'#+ ', '', md_text)
|
30 |
+
# Remove blockquotes
|
31 |
+
md_text = re.sub(r'^>.*$', '', md_text, flags=re.MULTILINE)
|
32 |
+
# Remove list markers
|
33 |
+
md_text = re.sub(r'^(\s*[-*+]|\d+\.)\s+', '', md_text, flags=re.MULTILINE)
|
34 |
+
# Remove horizontal rules
|
35 |
+
md_text = re.sub(r'^\s*[-*_]{3,}\s*$', '', md_text, flags=re.MULTILINE)
|
36 |
+
# Remove tables
|
37 |
+
md_text = re.sub(r'\|.*?\|', '', md_text)
|
38 |
+
# Remove raw HTML tags
|
39 |
+
md_text = re.sub(r'<.*?>', '', md_text)
|
40 |
+
# Decode HTML entities
|
41 |
+
md_text = unescape(md_text)
|
42 |
+
return md_text
|