Update app.py
Browse files
app.py
CHANGED
@@ -4,42 +4,83 @@ from torch.nn.functional import sigmoid
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
# Load text emotion model
|
10 |
-
model_name = "SamLowe/roberta-base-go_emotions"
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
13 |
-
|
14 |
-
# Load image emotion model
|
15 |
image_model_name = "Celal11/resnet-50-finetuned-FER2013-0.001"
|
16 |
image_processor = AutoImageProcessor.from_pretrained(image_model_name)
|
17 |
image_model = AutoModelForImageClassification.from_pretrained(image_model_name)
|
18 |
|
19 |
-
# Analyze
|
20 |
-
def
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
demo.launch()
|
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
|
7 |
+
# Load models
|
8 |
+
text_model_name = "SamLowe/roberta-base-go_emotions"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(text_model_name)
|
10 |
+
text_model = AutoModelForSequenceClassification.from_pretrained(text_model_name)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
image_model_name = "Celal11/resnet-50-finetuned-FER2013-0.001"
|
13 |
image_processor = AutoImageProcessor.from_pretrained(image_model_name)
|
14 |
image_model = AutoModelForImageClassification.from_pretrained(image_model_name)
|
15 |
|
16 |
+
# Analyze function
|
17 |
+
def analyze(text, threshold, image):
|
18 |
+
result_html = ""
|
19 |
+
|
20 |
+
if text:
|
21 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
22 |
+
with torch.no_grad():
|
23 |
+
logits = text_model(**inputs).logits
|
24 |
+
probs = sigmoid(logits)[0]
|
25 |
+
top = torch.topk(probs, k=3)
|
26 |
+
top_emotions = [f"<li>{text_model.config.id2label[i]} ({probs[i]:.2f})</li>" for i in top.indices]
|
27 |
+
result_html += f"<div class='notion-card fade-in slide-up'><h3>📝 Text Emotion</h3><ul>{''.join(top_emotions)}</ul></div>"
|
28 |
+
|
29 |
+
if image:
|
30 |
+
inputs_image = image_processor(images=image, return_tensors="pt")
|
31 |
+
with torch.no_grad():
|
32 |
+
logits_img = image_model(**inputs_image).logits
|
33 |
+
probs_img = torch.nn.functional.softmax(logits_img, dim=1)[0]
|
34 |
+
img_idx = torch.argmax(probs_img).item()
|
35 |
+
img_label = image_model.config.id2label[img_idx]
|
36 |
+
confidence = probs_img[img_idx].item()
|
37 |
+
result_html += f"<div class='notion-card fade-in slide-up'><h3>🖼️ Image Emotion</h3><p>{img_label} ({confidence:.2f})</p></div>"
|
38 |
+
|
39 |
+
return result_html or "<div class='notion-card fade-in'><p>No input provided.</p></div>"
|
40 |
+
|
41 |
+
# CSS
|
42 |
+
custom_css = """
|
43 |
+
@keyframes fadeInPop {
|
44 |
+
0% { opacity: 0; transform: scale(0.95); }
|
45 |
+
100% { opacity: 1; transform: scale(1); }
|
46 |
+
}
|
47 |
+
.fade-in {
|
48 |
+
animation: fadeInPop 0.6s ease-out both;
|
49 |
}
|
50 |
+
.slide-up {
|
51 |
+
animation: slideInUp 0.6s ease-out both;
|
52 |
+
}
|
53 |
+
@keyframes slideInUp {
|
54 |
+
from { transform: translateY(20px); opacity: 0; }
|
55 |
+
to { transform: translateY(0); opacity: 1; }
|
56 |
+
}
|
57 |
+
.notion-card {
|
58 |
+
background: white;
|
59 |
+
border-radius: 12px;
|
60 |
+
border: 1px solid #e5e7eb;
|
61 |
+
padding: 16px;
|
62 |
+
margin: 16px auto;
|
63 |
+
box-shadow: 0 6px 20px rgba(0,0,0,0.05);
|
64 |
+
max-width: 600px;
|
65 |
+
}
|
66 |
+
body {
|
67 |
+
background: #f9fafb;
|
68 |
+
font-family: 'Inter', sans-serif;
|
69 |
+
}
|
70 |
+
"""
|
71 |
+
|
72 |
+
# UI
|
73 |
+
with gr.Blocks(css=custom_css) as demo:
|
74 |
+
gr.Markdown("# 🧠 EmotionLens")
|
75 |
+
gr.Markdown("Detect emotion from text and face image.")
|
76 |
+
|
77 |
+
with gr.Row():
|
78 |
+
text_input = gr.Textbox(label="Your Text", lines=3, placeholder="How do you feel?")
|
79 |
+
image_input = gr.Image(type="pil", label="Upload Face Photo")
|
80 |
+
threshold_slider = gr.Slider(0.1, 0.9, value=0.3, label="Threshold")
|
81 |
+
analyze_btn = gr.Button("Analyze")
|
82 |
+
output = gr.HTML()
|
83 |
+
|
84 |
+
analyze_btn.click(fn=analyze, inputs=[text_input, threshold_slider, image_input], outputs=output)
|
85 |
|
86 |
+
demo.launch()
|