File size: 2,471 Bytes
23e46f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.nn.functional import softmax
import torch

# Load model and tokenizer
model_name = "bhadresh-savani/distilbert-base-uncased-emotion"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Emotion label to icon mapping
emotion_icons = {
    "admiration": "๐Ÿ˜",
    "amusement": "๐Ÿ˜…",
    "anger": "๐Ÿ˜ก",
    "annoyance": "๐Ÿ˜‘",
    "approval": "๐Ÿ‘",
    "caring": "๐Ÿ’—",
    "confusion": "๐Ÿค”",
    "curiosity": "๐Ÿ˜ฎ",
    "desire": "๐Ÿคค",
    "disappointment": "๐Ÿ˜ž",
    "disapproval": "๐Ÿ‘Ž",
    "disgust": "๐Ÿคฎ",
    "embarrassment": "๐Ÿ˜ณ",
    "excitement": "๐ŸŽ‰",
    "fear": "๐Ÿ˜ฑ",
    "gratitude": "๐Ÿ™",
    "grief": "๐Ÿ˜ญ",
    "joy": "๐Ÿ˜ƒ",
    "love": "โค๏ธ",
    "nervousness": "๐Ÿคง",
    "optimism": "๐Ÿ˜Š",
    "pride": "๐Ÿ˜Ž",
    "realization": "๐Ÿคฏ",
    "relief": "๐Ÿ˜Œ",
    "remorse": "๐Ÿ˜”",
    "sadness": "๐Ÿ˜ข",
    "surprise": "๐Ÿ˜ฒ",
    "neutral": "๐Ÿ˜"
}

# Prediction function
def get_emotion(text):
    inputs = tokenizer(text, return_tensors="pt")
    outputs = model(**inputs)
    probs = softmax(outputs.logits, dim=1)
    predicted_class = torch.argmax(probs).item()
    label = model.config.id2label[predicted_class]
    icon = emotion_icons.get(label, "")
    return f"{icon} {label.capitalize()}"

# Gradio UI
custom_css = """
body {
  background: linear-gradient(to right, #f9f9f9, #d4ecff);
  font-family: 'Segoe UI', sans-serif;
}
.gr-button {
  background-color: #007BFF !important;
  color: white !important;
  border-radius: 8px !important;
  font-weight: bold;
}
.gr-button:hover {
  background-color: #0056b3 !important;
}
.gr-textbox {
  border-radius: 8px !important;
  border: 1px solid #ccc !important;
  padding: 10px !important;
}
.output-textbox {
  font-size: 1.5rem;
  font-weight: bold;
  color: #333;
  background-color: #f1f9ff;
  border-radius: 8px;
  padding: 10px;
  border: 1px solid #007BFF;
}
"""

demo = gr.Interface(
    fn=get_emotion,
    inputs=gr.Textbox(lines=3, placeholder="What's on your mind today?", label="Your Text"),
    outputs=gr.Textbox(label="Detected Emotion", elem_classes=["output-textbox"]),
    title="๐Ÿฅฐ Emotion Detector",
    description="Type a sentence below and hit Submit to reveal the emotion behind your words.",
    theme="default",
    css=custom_css
)

demo.launch()