# download_data.py import requests import tarfile import zipfile import io import pandas as pd from pathlib import Path import sys import huggingface_hub from datasets import load_dataset, DatasetDict # Import fleurs DataFrame directly from its source module from datasets_.fleurs import fleurs # --- Configuration --- # Add project root to sys.path (still useful for potential future imports if needed) project_root = Path(__file__).resolve().parent if str(project_root) not in sys.path: sys.path.append(str(project_root)) DATA_DIR = project_root / "data" FLEURS_BASE_URL = "https://huggingface.co/datasets/google/fleurs/resolve/main/data" FLEURS_TARGET_DIR = DATA_DIR / "fleurs" FLORES_PLUS_HF_ID = "openlanguagedata/flores_plus" FLORES_TARGET_DIR = DATA_DIR / "floresp-v2.0-rc.3" / "dev_parquet" # Note: Saving as parquet GLOTTOLOG_URL = "https://cdstar.shh.mpg.de/bitstreams/EAEA0-B44E-8CEC-EA65-0/glottolog_languoid.zip" # Assumed direct link from https://glottolog.org/meta/downloads GLOTTOLOG_TARGET_DIR = DATA_DIR / "glottolog_languoid.csv" GLOTTOLOG_CSV_NAME = "languoid.csv" SCRIPTCODES_URL = "https://www.unicode.org/iso15924/iso15924-codes.html" # This is HTML, need manual download or parsing SCRIPTCODES_TARGET_FILE = DATA_DIR / "ScriptCodes.csv" SPBLEU_SPM_URL = "https://tinyurl.com/flores200sacrebleuspm" # Assumed direct link SPBLEU_TARGET_DIR = DATA_DIR / "spbleu" SPBLEU_SPM_NAME = "flores200_sacrebleu_tokenizer_spm.model" SPBLEU_DICT_URL = "https://dl.fbaipublicfiles.com/large_objects/nllb/models/spm_200/dictionary.txt" SPBLEU_DICT_NAME = "dictionary.txt" # --- Helper Functions --- def download_file(url, path: Path): """Downloads a file from a URL to a local path.""" print(f"Downloading {url} to {path}...") try: response = requests.get(url, stream=True, timeout=60) response.raise_for_status() # Raise an exception for bad status codes path.parent.mkdir(parents=True, exist_ok=True) with open(path, "wb") as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) print(f"Successfully downloaded {path.name}.") except requests.exceptions.RequestException as e: print(f"Error downloading {url}: {e}") except Exception as e: print(f"An error occurred while saving {path}: {e}") def extract_tar_gz(tar_path: Path, extract_path: Path): """Extracts a .tar.gz file.""" print(f"Extracting {tar_path} to {extract_path}...") try: with tarfile.open(tar_path, "r:gz") as tar: tar.extractall(path=extract_path) print(f"Successfully extracted {tar_path.name}.") # tar_path.unlink() # Optionally remove the archive after extraction except tarfile.TarError as e: print(f"Error extracting {tar_path}: {e}") except Exception as e: print(f"An unexpected error occurred during extraction: {e}") def extract_zip(zip_content: bytes, extract_path: Path, target_filename: str): """Extracts a specific file from zip content in memory.""" print(f"Extracting {target_filename} from zip data to {extract_path}...") try: with zipfile.ZipFile(io.BytesIO(zip_content)) as z: # Find the correct file within the zip structure target_zip_path = None for member in z.namelist(): if member.endswith(target_filename): target_zip_path = member break if target_zip_path: with z.open(target_zip_path) as source, open(extract_path / target_filename, "wb") as target: target.write(source.read()) print(f"Successfully extracted {target_filename}.") else: print(f"Error: Could not find {target_filename} within the zip archive.") except zipfile.BadZipFile: print("Error: Downloaded file is not a valid zip archive.") except Exception as e: print(f"An error occurred during zip extraction: {e}") # --- Download Functions --- def download_fleurs_data(): """Downloads Fleurs audio and text data.""" print("\n--- Downloading Fleurs Data ---") FLEURS_TARGET_DIR.mkdir(parents=True, exist_ok=True) # Use the fleurs_tag column from the imported DataFrame fleurs_tags_list = fleurs['fleurs_tag'].tolist() if not fleurs_tags_list: print("No Fleurs tags found in imported fleurs DataFrame. Skipping Fleurs.") return print(f"Checking/Downloading Fleurs for {len(fleurs_tags_list)} languages...") for lang_tag in fleurs_tags_list: lang_dir = FLEURS_TARGET_DIR / lang_tag audio_dir = lang_dir / "audio" dev_tsv_path = lang_dir / "dev.tsv" dev_audio_archive_path = audio_dir / "dev.tar.gz" audio_extracted_marker = audio_dir / "dev" # Check if extraction likely happened # Download TSV if not dev_tsv_path.exists(): tsv_url = f"{FLEURS_BASE_URL}/{lang_tag}/dev.tsv" download_file(tsv_url, dev_tsv_path) else: print(f"Found: {dev_tsv_path}") # Download and Extract Audio if not audio_extracted_marker.exists(): if not dev_audio_archive_path.exists(): tar_url = f"{FLEURS_BASE_URL}/{lang_tag}/audio/dev.tar.gz" download_file(tar_url, dev_audio_archive_path) if dev_audio_archive_path.exists(): extract_tar_gz(dev_audio_archive_path, audio_dir) else: print(f"Audio archive missing, cannot extract for {lang_tag}") else: print(f"Found extracted audio: {audio_extracted_marker}") def download_flores_plus_data(): """Downloads Flores+ data using Hugging Face datasets library.""" print("\n--- Downloading Flores+ Data (requires HF login & accepted terms) ---") FLORES_TARGET_DIR.mkdir(parents=True, exist_ok=True) try: # Check login status first token = huggingface_hub.HfFolder.get_token() if not token: print("Hugging Face token not found. Please log in using `huggingface-cli login`.") print("You also need to accept the terms for 'openlanguagedata/flores_plus' on the HF website.") return print(f"Attempting to download '{FLORES_PLUS_HF_ID}' (dev split)...") # Load only the 'dev' split ds = load_dataset(FLORES_PLUS_HF_ID, split='dev', verification_mode='no_checks') # Save as parquet files, potentially one per language if needed later # For simplicity now, save the whole dev split as one parquet file target_file = FLORES_TARGET_DIR / "dev_split.parquet" print(f"Saving dev split to {target_file}...") ds.to_parquet(target_file) print("Flores+ dev split downloaded and saved as parquet.") except huggingface_hub.utils.GatedRepoError: print(f"Error: Access to '{FLORES_PLUS_HF_ID}' is gated.") print("Please ensure you are logged in (`huggingface-cli login`) and have accepted the terms ") print(f"on the dataset page: https://huggingface.co/datasets/{FLORES_PLUS_HF_ID}") except Exception as e: print(f"An error occurred downloading or saving Flores+: {e}") def download_glottolog_data(): """Downloads and extracts Glottolog languoid CSV.""" print("\n--- Downloading Glottolog Data ---") target_csv = GLOTTOLOG_TARGET_DIR / GLOTTOLOG_CSV_NAME if not target_csv.exists(): print(f"Downloading Glottolog zip from {GLOTTOLOG_URL}...") try: response = requests.get(GLOTTOLOG_URL, timeout=60) response.raise_for_status() GLOTTOLOG_TARGET_DIR.mkdir(parents=True, exist_ok=True) extract_zip(response.content, GLOTTOLOG_TARGET_DIR, GLOTTOLOG_CSV_NAME) except requests.exceptions.RequestException as e: print(f"Error downloading Glottolog zip: {e}") except Exception as e: print(f"An error occurred processing Glottolog: {e}") else: print(f"Found: {target_csv}") def download_scriptcodes_data(): """Downloads ScriptCodes CSV.""" print("\n--- Downloading ScriptCodes Data ---") # The URL points to an HTML page, not a direct CSV link. # Manual download is likely required for ScriptCodes.csv. print(f"Cannot automatically download from {SCRIPTCODES_URL}") print(f"Please manually download the ISO 15924 codes list (often available as a .txt file)") print("from the Unicode website or related sources and save it as:") print(f"{SCRIPTCODES_TARGET_FILE}") if SCRIPTCODES_TARGET_FILE.exists(): print(f"Note: File already exists at {SCRIPTCODES_TARGET_FILE}") def download_spbleu_data(): """Downloads the SPM model and dictionary for spbleu.""" print("\n--- Downloading spbleu SPM Model and Dictionary ---") SPBLEU_TARGET_DIR.mkdir(parents=True, exist_ok=True) # Download SPM Model target_model_file = SPBLEU_TARGET_DIR / SPBLEU_SPM_NAME if not target_model_file.exists(): print(f"Downloading SPM Model...") download_file(SPBLEU_SPM_URL, target_model_file) else: print(f"Found: {target_model_file}") # Download Dictionary target_dict_file = SPBLEU_TARGET_DIR / SPBLEU_DICT_NAME if not target_dict_file.exists(): print(f"Downloading Dictionary...") download_file(SPBLEU_DICT_URL, target_dict_file) else: print(f"Found: {target_dict_file}") # --- Conversion Function --- def convert_flores_parquet_to_text(): """Converts the downloaded Flores+ parquet dev split to text files.""" print("\n--- Converting Flores+ Parquet to Text Files ---") parquet_file = FLORES_TARGET_DIR / "dev_split.parquet" text_dir = project_root / "data" / "floresp-v2.0-rc.3" / "dev" # Original expected dir if not parquet_file.exists(): print(f"Parquet file not found: {parquet_file}. Skipping conversion.") return try: print(f"Reading parquet file: {parquet_file}") df = pd.read_parquet(parquet_file) print(f"Read {len(df)} rows from parquet.") if not all(col in df.columns for col in ['iso_639_3', 'iso_15924', 'text']): print("Error: Parquet file missing required columns (iso_639_3, iso_15924, text).") return text_dir.mkdir(parents=True, exist_ok=True) print(f"Target directory for text files: {text_dir}") # Group by language and script to create individual files grouped = df.groupby(['iso_639_3', 'iso_15924']) count = 0 for (lang, script), group in grouped: target_filename = f"dev.{lang}_{script}" target_path = text_dir / target_filename print(f"Writing {len(group)} sentences to {target_path}...") try: with open(target_path, 'w', encoding='utf-8') as f: for sentence in group['text']: f.write(sentence + '\n') count += 1 except Exception as e: print(f"Error writing file {target_path}: {e}") print(f"Successfully wrote {count} language/script files to {text_dir}.") except ImportError: print("Error: pandas or pyarrow might be missing. Cannot read parquet.") print("Please install them: pip install pandas pyarrow") except Exception as e: print(f"An error occurred during parquet conversion: {e}") # --- Main Execution --- def main(): """Runs all download functions and the conversion step.""" print("Starting data download process...") DATA_DIR.mkdir(exist_ok=True) download_flores_plus_data() convert_flores_parquet_to_text() #download_fleurs_data() download_glottolog_data() download_scriptcodes_data() download_spbleu_data() print("\nData download process finished.") print("Please verify downloads and manually obtain ScriptCodes.csv if needed.") print("Note: Flores+ was downloaded as parquet, which might require changes but has been processed as well") print("in 'evals/datasets_/flores.py' to be read correctly.") if __name__ == "__main__": main()