David Pomerenke
commited on
Commit
·
a683732
1
Parent(s):
47170a5
Implement MMLU task
Browse files- datasets.json +1 -1
- evals/datasets_/mmlu.py +38 -15
- evals/main.py +1 -1
- evals/tasks.py +19 -18
- frontend/src/components/DatasetTable.js +1 -1
- results.json +0 -0
datasets.json
CHANGED
@@ -285,7 +285,7 @@
|
|
285 |
"parallel": true,
|
286 |
"translation": "machine",
|
287 |
"base": "MMLU",
|
288 |
-
"implemented":
|
289 |
"group": "Multitask Language Understanding"
|
290 |
},
|
291 |
{
|
|
|
285 |
"parallel": true,
|
286 |
"translation": "machine",
|
287 |
"base": "MMLU",
|
288 |
+
"implemented": true,
|
289 |
"group": "Multitask Language Understanding"
|
290 |
},
|
291 |
{
|
evals/datasets_/mmlu.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
from collections import Counter, defaultdict
|
2 |
import random
|
|
|
|
|
3 |
from datasets import get_dataset_config_names, load_dataset
|
4 |
from joblib.memory import Memory
|
5 |
from langcodes import Language, standardize_tag
|
@@ -119,12 +120,30 @@ def print_datasets_analysis():
|
|
119 |
|
120 |
# print_datasets_analysis()
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
tags_afrimmlu = {
|
129 |
standardize_tag(a, macro=True): a
|
130 |
for a in _get_dataset_config_names("masakhane/afrimmlu")
|
@@ -140,21 +159,25 @@ def load_mmlu(language_bcp_47, i):
|
|
140 |
)
|
141 |
if language_bcp_47 in tags_afrimmlu:
|
142 |
ds = _load_dataset("masakhane/afrimmlu", tags_afrimmlu[language_bcp_47])
|
143 |
-
|
|
|
|
|
|
|
144 |
elif language_bcp_47 in tags_global_mmlu:
|
145 |
ds = _load_dataset("CohereForAI/Global-MMLU", tags_global_mmlu[language_bcp_47])
|
146 |
-
def add_choices(split):
|
147 |
-
split["choices"] = list(zip([split["option_a"], split["option_b"], split["option_c"], split["option_d"]]))
|
148 |
-
return split
|
149 |
ds = ds.map(add_choices)
|
150 |
-
|
|
|
|
|
151 |
elif language_bcp_47 in tags_okapi:
|
152 |
ds = _load_dataset(
|
153 |
"lighteval/okapi_mmlu", language_bcp_47, trust_remote_code=True
|
154 |
)
|
155 |
-
|
|
|
|
|
156 |
elif language_bcp_47 in tags_mmlux:
|
157 |
# loading this is more complicated, todo
|
158 |
-
return None
|
159 |
else:
|
160 |
-
return None
|
|
|
|
|
1 |
import random
|
2 |
+
from collections import Counter, defaultdict
|
3 |
+
|
4 |
from datasets import get_dataset_config_names, load_dataset
|
5 |
from joblib.memory import Memory
|
6 |
from langcodes import Language, standardize_tag
|
|
|
120 |
|
121 |
# print_datasets_analysis()
|
122 |
|
123 |
+
|
124 |
+
def parse_choices(row):
|
125 |
+
if not isinstance(row["choices"], list):
|
126 |
+
row["choices"] = eval(row["choices"])
|
127 |
+
return row
|
128 |
+
|
129 |
+
|
130 |
+
def add_choices(row):
|
131 |
+
row["choices"] = [
|
132 |
+
row["option_a"],
|
133 |
+
row["option_b"],
|
134 |
+
row["option_c"],
|
135 |
+
row["option_d"],
|
136 |
+
]
|
137 |
+
return row
|
138 |
+
|
139 |
+
|
140 |
+
def load_mmlu(language_bcp_47, nr):
|
141 |
+
categories = sorted(
|
142 |
+
list(set(_load_dataset("masakhane/afrimmlu", "eng")["dev"]["subject"]))
|
143 |
+
)
|
144 |
+
category = categories[nr % len(categories)]
|
145 |
+
random.seed(nr)
|
146 |
+
i = random.randint(0, 100)
|
147 |
tags_afrimmlu = {
|
148 |
standardize_tag(a, macro=True): a
|
149 |
for a in _get_dataset_config_names("masakhane/afrimmlu")
|
|
|
159 |
)
|
160 |
if language_bcp_47 in tags_afrimmlu:
|
161 |
ds = _load_dataset("masakhane/afrimmlu", tags_afrimmlu[language_bcp_47])
|
162 |
+
ds = ds.map(parse_choices)
|
163 |
+
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
164 |
+
task = ds["test"].filter(lambda x: x["subject"] == category)[i]
|
165 |
+
return "masakhane/afrimmlu", examples, task
|
166 |
elif language_bcp_47 in tags_global_mmlu:
|
167 |
ds = _load_dataset("CohereForAI/Global-MMLU", tags_global_mmlu[language_bcp_47])
|
|
|
|
|
|
|
168 |
ds = ds.map(add_choices)
|
169 |
+
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
170 |
+
task = ds["test"].filter(lambda x: x["subject"] == category)[i]
|
171 |
+
return "CohereForAI/Global-MMLU", examples, task
|
172 |
elif language_bcp_47 in tags_okapi:
|
173 |
ds = _load_dataset(
|
174 |
"lighteval/okapi_mmlu", language_bcp_47, trust_remote_code=True
|
175 |
)
|
176 |
+
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
177 |
+
task = ds["test"].filter(lambda x: x["id"] == f"{category}/test/{i}")[0]
|
178 |
+
return "lighteval/okapi_mmlu", examples, task
|
179 |
elif language_bcp_47 in tags_mmlux:
|
180 |
# loading this is more complicated, todo
|
181 |
+
return None, None, None
|
182 |
else:
|
183 |
+
return None, None, None
|
evals/main.py
CHANGED
@@ -12,7 +12,7 @@ from tasks import tasks
|
|
12 |
# ===== config =====
|
13 |
|
14 |
n_sentences = 10
|
15 |
-
n_languages =
|
16 |
n_models = 3
|
17 |
|
18 |
# ===== run evaluation and aggregate results =====
|
|
|
12 |
# ===== config =====
|
13 |
|
14 |
n_sentences = 10
|
15 |
+
n_languages = 10
|
16 |
n_models = 3
|
17 |
|
18 |
# ===== run evaluation and aggregate results =====
|
evals/tasks.py
CHANGED
@@ -5,10 +5,10 @@ import evaluate
|
|
5 |
import pandas as pd
|
6 |
import sentencepiece as spm
|
7 |
from datasets_.flores import flores_sentences
|
|
|
8 |
from joblib.memory import Memory
|
9 |
from languages import languages, script_name
|
10 |
from models import complete, transcribe
|
11 |
-
from datasets import load_dataset, get_dataset_config_names
|
12 |
|
13 |
cache = Memory(location=".cache", verbose=0).cache
|
14 |
bleu = evaluate.load("bleu")
|
@@ -187,47 +187,47 @@ async def mlm_and_evaluate(model, language_bcp_47, nr):
|
|
187 |
]
|
188 |
|
189 |
|
190 |
-
|
191 |
@cache
|
192 |
async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
193 |
-
|
|
|
|
|
|
|
194 |
def format_item(item):
|
195 |
-
return f"""{item[
|
196 |
|
197 |
-
A: {item[
|
198 |
-
B: {item[
|
199 |
-
C: {item[
|
200 |
-
D: {item[
|
201 |
|
202 |
A|B|C|D?"""
|
|
|
203 |
messages = []
|
204 |
-
for example in
|
205 |
-
messages += [
|
206 |
-
|
|
|
|
|
|
|
207 |
reply = await complete(
|
208 |
model=model,
|
209 |
messages=messages,
|
210 |
temperature=0,
|
211 |
max_tokens=1,
|
212 |
)
|
213 |
-
|
214 |
-
acc = int(reply.choices[0].message.content.strip() == item["answer"])
|
215 |
return [
|
216 |
{
|
217 |
"model": model,
|
218 |
"bcp_47": language_bcp_47,
|
219 |
"task": "mmlu",
|
220 |
-
"dataset": ds,
|
221 |
"metric": "accuracy",
|
222 |
"score": acc,
|
223 |
"sentence_nr": nr,
|
224 |
}
|
225 |
]
|
226 |
|
227 |
-
from asyncio import run
|
228 |
-
results = run(mmlu_and_evaluate("gpt-4o-mini", "fr", 0))
|
229 |
-
print(results)
|
230 |
-
exit()
|
231 |
|
232 |
@cache
|
233 |
async def transcribe_and_evaluate(model, language_bcp_47, nr):
|
@@ -260,6 +260,7 @@ async def transcribe_and_evaluate(model, language_bcp_47, nr):
|
|
260 |
}
|
261 |
]
|
262 |
|
|
|
263 |
tasks = [
|
264 |
partial(translate_and_evaluate, mode="from"),
|
265 |
partial(translate_and_evaluate, mode="to"),
|
|
|
5 |
import pandas as pd
|
6 |
import sentencepiece as spm
|
7 |
from datasets_.flores import flores_sentences
|
8 |
+
from datasets_.mmlu import load_mmlu
|
9 |
from joblib.memory import Memory
|
10 |
from languages import languages, script_name
|
11 |
from models import complete, transcribe
|
|
|
12 |
|
13 |
cache = Memory(location=".cache", verbose=0).cache
|
14 |
bleu = evaluate.load("bleu")
|
|
|
187 |
]
|
188 |
|
189 |
|
|
|
190 |
@cache
|
191 |
async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
192 |
+
ds_name, examples, task = load_mmlu(language_bcp_47, nr)
|
193 |
+
if not task:
|
194 |
+
return []
|
195 |
+
|
196 |
def format_item(item):
|
197 |
+
return f"""{item["question"]}
|
198 |
|
199 |
+
A: {item["choices"][0]}
|
200 |
+
B: {item["choices"][1]}
|
201 |
+
C: {item["choices"][2]}
|
202 |
+
D: {item["choices"][3]}
|
203 |
|
204 |
A|B|C|D?"""
|
205 |
+
|
206 |
messages = []
|
207 |
+
for example in examples:
|
208 |
+
messages += [
|
209 |
+
{"role": "user", "content": format_item(example)},
|
210 |
+
{"role": "assistant", "content": example["answer"]},
|
211 |
+
]
|
212 |
+
messages += [{"role": "user", "content": format_item(task)}]
|
213 |
reply = await complete(
|
214 |
model=model,
|
215 |
messages=messages,
|
216 |
temperature=0,
|
217 |
max_tokens=1,
|
218 |
)
|
219 |
+
acc = int(reply.choices[0].message.content[:1].strip() == task["answer"])
|
|
|
220 |
return [
|
221 |
{
|
222 |
"model": model,
|
223 |
"bcp_47": language_bcp_47,
|
224 |
"task": "mmlu",
|
|
|
225 |
"metric": "accuracy",
|
226 |
"score": acc,
|
227 |
"sentence_nr": nr,
|
228 |
}
|
229 |
]
|
230 |
|
|
|
|
|
|
|
|
|
231 |
|
232 |
@cache
|
233 |
async def transcribe_and_evaluate(model, language_bcp_47, nr):
|
|
|
260 |
}
|
261 |
]
|
262 |
|
263 |
+
|
264 |
tasks = [
|
265 |
partial(translate_and_evaluate, mode="from"),
|
266 |
partial(translate_and_evaluate, mode="to"),
|
frontend/src/components/DatasetTable.js
CHANGED
@@ -145,7 +145,7 @@ const DatasetTable = ({ data }) => {
|
|
145 |
filter
|
146 |
filterElement={tasksRowFilterTemplate}
|
147 |
showFilterMatchModes={false}
|
148 |
-
style={{ minWidth: '10rem', maxWidth: '
|
149 |
body={tasksBodyTemplate}
|
150 |
/>
|
151 |
<Column
|
|
|
145 |
filter
|
146 |
filterElement={tasksRowFilterTemplate}
|
147 |
showFilterMatchModes={false}
|
148 |
+
style={{ minWidth: '10rem', maxWidth: '10rem' }}
|
149 |
body={tasksBodyTemplate}
|
150 |
/>
|
151 |
<Column
|
results.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|