|
import re |
|
from collections import defaultdict |
|
from joblib.memory import Memory |
|
import pandas as pd |
|
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION |
|
|
|
cache = Memory(location=".cache", verbose=0).cache |
|
|
|
|
|
def population(bcp_47): |
|
items = { |
|
re.sub(r"^[a-z]+-", "", lang): pop |
|
for lang, pop in LANGUAGE_SPEAKING_POPULATION.items() |
|
if re.match(rf"^{bcp_47}-[A-Z]{{2}}$", lang) |
|
} |
|
return items |
|
|
|
@cache |
|
def make_country_table(language_table): |
|
countries = defaultdict(list) |
|
for lang in language_table.itertuples(): |
|
for country, speaker_pop in population(lang.bcp_47).items(): |
|
countries[country].append( |
|
{ |
|
"name": lang.language_name, |
|
"bcp_47": lang.bcp_47, |
|
"population": speaker_pop, |
|
"score": lang.average if not pd.isna(lang.average) else 0, |
|
} |
|
) |
|
for country, languages in countries.items(): |
|
speaker_pop = sum(entry["population"] for entry in languages) |
|
score = ( |
|
sum(entry["score"] * entry["population"] for entry in languages) |
|
/ speaker_pop |
|
) |
|
countries[country] = { |
|
"score": score, |
|
"languages": languages, |
|
} |
|
countries = [{"iso2": country, **data} for country, data in countries.items()] |
|
return pd.DataFrame(countries) |
|
|