ml-model-restapi / train_bert.py
fahmiaziz98
py 3.9 + torch cpu
7f6c186
import logging
from datetime import datetime
import pandas as pd
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from torch.utils.data import Dataset, DataLoader
from transformers import (
BertConfig,
BertForSequenceClassification,
BertTokenizer,
Trainer,
TrainingArguments,
EarlyStoppingCallback,
)
from sklearn.model_selection import train_test_split
from sklearn.metrics import (
accuracy_score,
f1_score,
precision_score,
recall_score,
confusion_matrix,
)
from sklearn.utils.class_weight import compute_class_weight
# Setup
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained("bert-base-uncased", num_labels=2)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
last_confusion_matrix = None
class WeightedBertForSequenceClassification(BertForSequenceClassification):
def __init__(self, config, class_weights):
super().__init__(config)
self.class_weights = class_weights
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
outputs = super().forward(input_ids=input_ids, attention_mask=attention_mask, labels=None, **kwargs)
logits = outputs.logits
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(weight=self.class_weights)
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
return {"loss": loss, "logits": logits}
class SMSClassificationDataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = torch.tensor(labels, dtype=torch.long)
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
item = {key: val[idx] for key, val in self.encodings.items()}
item["labels"] = self.labels[idx]
return item
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = torch.argmax(torch.tensor(logits), dim=1)
acc = accuracy_score(labels, predictions)
precision = precision_score(labels, predictions, average="weighted", zero_division=0)
recall = recall_score(labels, predictions, average="weighted")
f1 = f1_score(labels, predictions, average='weighted')
cm = confusion_matrix(labels, predictions)
last_confusion_matrix = cm
return {
'accuracy': acc,
'precision': precision,
'recall': recall,
'f1': f1
}
def train():
# Load and preprocess data
df = pd.read_csv('data/spam.csv', encoding='iso-8859-1')[['label', 'text']]
df['label'] = df['label'].map({'spam': 1, 'ham': 0})
# Split into train (70%), validation (15%), test (15%)
train_texts, temp_texts, train_labels, temp_labels = train_test_split(
df['text'], df['label'], test_size=0.30, random_state=42, stratify=df['label']
)
val_texts, test_texts, val_labels, test_labels = train_test_split(
temp_texts, temp_labels, test_size=0.5, random_state=42, stratify=temp_labels
)
# Compute class weights from training labels
class_weights = compute_class_weight(
class_weight='balanced',
classes=np.unique(train_labels),
y=train_labels
)
class_weights = torch.tensor(class_weights, dtype=torch.float).to(device)
# Silence excessive logging
for logger in logging.root.manager.loggerDict:
if "transformers" in logger.lower():
logging.getLogger(logger).setLevel(logging.ERROR)
# Initialize model
model = WeightedBertForSequenceClassification(config, class_weights=class_weights)
model.load_state_dict(BertForSequenceClassification.from_pretrained(
"bert-base-uncased", num_labels=2, use_safetensors=True, return_dict=False, attn_implementation="sdpa"
).state_dict(), strict=False)
model.to(device)
# Tokenize
train_encodings = tokenizer(train_texts.tolist(), truncation=True, padding=True, return_tensors="pt")
val_encodings = tokenizer(val_texts.tolist(), truncation=True, padding=True, return_tensors="pt")
test_encodings = tokenizer(test_texts.tolist(), truncation=True, padding=True, return_tensors="pt")
# Datasets
train_dataset = SMSClassificationDataset(train_encodings, train_labels.tolist())
val_dataset = SMSClassificationDataset(val_encodings, val_labels.tolist())
test_dataset = SMSClassificationDataset(test_encodings, test_labels.tolist())
# Training setup
training_args = TrainingArguments(
output_dir='./models/pretrained',
num_train_epochs=5,
per_device_train_batch_size=8,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
eval_strategy="epoch",
report_to="none",
save_total_limit=1,
load_best_model_at_end=True,
save_strategy="epoch",
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]
)
# Train
trainer.train()
# Save logs
logs = trainer.state.log_history
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
pd.DataFrame(logs).to_csv(f"logs/training_logs_{timestamp}.csv", index=False)
# Save model and tokenizer
tokenizer.save_pretrained('./models/pretrained')
model.save_pretrained('./models/pretrained')
# Final test set evaluation
print("\nEvaluating on FINAL TEST SET:")
final_test_metrics = trainer.evaluate(eval_dataset=test_dataset)
print("Final Test Set Metrics:", final_test_metrics)
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
log_filename = f"logs/final_test_results_{timestamp}.txt"
with open(log_filename, "w") as f:
f.write("FINAL TEST SET METRICS\n")
for key, value in final_test_metrics.items():
f.write(f"{key}: {value}\n")
f.write("\nCONFUSION MATRIX\n")
f.write(str(last_confusion_matrix))
if __name__ == "__main__":
train()