Spaces:
Sleeping
Sleeping
File size: 1,378 Bytes
3ec25da db2db2a 583e7cf db2db2a 8973310 db2db2a 8973310 db2db2a 3ec25da b08d3ea 3ec25da b08d3ea db2db2a 4ca551f db2db2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from scripts.s3 import download_model_from_s3
from router.disaster import router as disaster_router
from router.sentiment import router as sentiment_router
from router.image_clf import router as image_router
from utils.log import logger
app = FastAPI(
title="ML API",
description="ML API for sentiment analysis and image classification",
version="0.0.1",
openapi_url="/openapi.json"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
sentiment_model_path = "ml-models/tinybert-sentiment-analysis/"
disaster_model_path = "ml-models/tinybert-disaster-tweet/"
image_model_path = "ml-models/vit-human-pose-classification/"
logger.info("Ensuring models are downloaded...")
download_model_from_s3(sentiment_model_path, sentiment_model_path)
download_model_from_s3(disaster_model_path, disaster_model_path)
download_model_from_s3(image_model_path, image_model_path)
logger.info("All models are ready.")
@app.get("/")
def read_root():
return {"Status": "Running"}
app.include_router(disaster_router, prefix="/api/v1", tags=["Disaster"])
app.include_router(sentiment_router, prefix="/api/v1", tags=["Sentiment"])
app.include_router(image_router, prefix="/api/v1", tags=["Image"]) |