Spaces:
Sleeping
Sleeping
File size: 1,494 Bytes
db2db2a 665e8bb db2db2a 540c05e db2db2a 7312439 db2db2a 40ea044 665e8bb db2db2a 40ea044 db2db2a 665e8bb db2db2a 540c05e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import os
import time
import requests
from PIL import Image
from io import BytesIO
from fastapi import APIRouter, HTTPException
from scripts.data_model import ImageInput, ImageOutput
from utils.pipeline import load_model
from utils.log import logger
router = APIRouter()
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
MODEL_PATH = os.path.join(BASE_DIR, "ml-models", "vit-human-pose-classification/")
@router.post(
"/image_classification",
response_model=ImageOutput,
summary="Image Classification",
description="Classify the image using a pre-trained model."
)
def image_classification(input: ImageInput)-> ImageOutput:
try:
pipe = load_model(MODEL_PATH, is_image_model=True)
image = input.url
logger.info(f"Image URLs: {image[-1]}")
start = time.time()
output = pipe(image[-1])
end = time.time()
prediction_time = int((end-start)*1000)
labels_and_scores = [{"label": x['label'], "score": x['score']} for x in output]
return ImageOutput(
user_id=input.user_id,
url=input.url,
model_name="vit-human-pose-classification",
labels=[x['label'] for x in labels_and_scores],
scores=[x['score'] for x in labels_and_scores],
prediction_time=prediction_time
)
except Exception as e:
return {"error": f"Failed to process image classification: {str(e)}"}, 500 |