Spaces:
Sleeping
Sleeping
fahmiaziz98
commited on
Commit
Β·
6f3af4f
1
Parent(s):
e069d9a
first commit
Browse files- app.py +87 -3
- requirements.txt +3 -0
- utils.py +43 -0
app.py
CHANGED
@@ -1,8 +1,92 @@
|
|
1 |
-
import
|
|
|
2 |
import streamlit as st
|
|
|
3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
st.title("Machine Learning Model Deployment")
|
6 |
-
|
7 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
import streamlit as st
|
4 |
+
from transformers import pipeline, AutoImageProcessor
|
5 |
from PIL import Image
|
6 |
+
from utils import download_model_from_s3
|
7 |
+
|
8 |
+
model_path = {
|
9 |
+
"TinyBert Sentiment Analysis": "ml-models/tinybert-sentiment-analysis/",
|
10 |
+
"TinyBert Disaster Classification": "ml-models/tinybert-disaster-tweet/",
|
11 |
+
"VIT Pose Classification": "ml-models/vit-human-pose-classification/"
|
12 |
+
}
|
13 |
+
|
14 |
|
15 |
st.title("Machine Learning Model Deployment")
|
16 |
+
|
17 |
+
model_choice = st.selectbox(
|
18 |
+
"Select Model:",[
|
19 |
+
"TinyBert Sentiment Analysis",
|
20 |
+
"TinyBert Disaster Classification",
|
21 |
+
"VIT Pose Classification"
|
22 |
+
]
|
23 |
+
)
|
24 |
+
|
25 |
+
local_path = model_choice.lower().replace(" ", "-")
|
26 |
+
s3_prefix = model_paths[model_choice]
|
27 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
28 |
+
|
29 |
+
if "downloaded_models" not in st.session_state:
|
30 |
+
st.session_state.downloaded_models = set()
|
31 |
+
|
32 |
+
|
33 |
+
if model_choice not in st.session_state.downloaded_models:
|
34 |
+
if st.button(f"Download {model_choice}"):
|
35 |
+
with st.spinner(f"Downloading {model_choice}... Please wait!"):
|
36 |
+
download_model_from_s3(local_path, s3_prefix)
|
37 |
+
st.session_state.downloaded_models.add(model_choice)
|
38 |
+
st.toast(f"β
{model_choice} Succesfuly Download!", icon="π")
|
39 |
+
|
40 |
+
# **1. Sentiment Analysis Model**
|
41 |
+
if model_choice == "TinyBERT Sentiment Analysis":
|
42 |
+
text = st.text_area("Enter Text:", "Your review...")
|
43 |
+
predict = st.button("Predict Sentiment")
|
44 |
+
|
45 |
+
classifier = pipeline("text-classification", model=local_path, device=device)
|
46 |
+
|
47 |
+
if predict:
|
48 |
+
with st.spinner("Predicting..."):
|
49 |
+
output = classifier(text)
|
50 |
+
st.write(output)
|
51 |
+
|
52 |
+
# **2. Disaster Classification**
|
53 |
+
if model_choice == "TinyBert Disaster Classification":
|
54 |
+
text = st.text_area("Enter Text:", "Your Tweet...")
|
55 |
+
predict = st.button("Predict Sentiment")
|
56 |
+
|
57 |
+
classifier = pipeline("text-classification", model=local_path, device=device)
|
58 |
+
|
59 |
+
if predict:
|
60 |
+
with st.spinner("Predicting..."):
|
61 |
+
output = classifier(text)
|
62 |
+
st.write(output)
|
63 |
+
|
64 |
+
# **3. Image Classification**
|
65 |
+
if model_choice == "VIT Pose Classification":
|
66 |
+
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "png", "jpeg"])
|
67 |
+
predict = st.button("Predict Image")
|
68 |
+
|
69 |
+
if uploaded_file is not None:
|
70 |
+
image = Image.open(uploaded_file)
|
71 |
+
st.image(image, caption="Your Image", use_column_width=True)
|
72 |
+
|
73 |
+
image_processor = AutoImageProcessor.from_pretrained(local_directory, use_fast=True)
|
74 |
+
pipe = pipeline('image-classification', model=local_path, image_processor=image_processor, device=device)
|
75 |
+
|
76 |
+
if predict:
|
77 |
+
with st.spinner("Predicting..."):
|
78 |
+
output = pipe(image)
|
79 |
+
st.write(output)
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
user_input = st.text_area("Enter text here...")
|
85 |
+
predict = st.button("Predict")
|
86 |
+
if predict:
|
87 |
+
with st.spinner("Downloading Model...")
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
|
requirements.txt
CHANGED
@@ -1 +1,4 @@
|
|
1 |
streamlit
|
|
|
|
|
|
|
|
1 |
streamlit
|
2 |
+
torch
|
3 |
+
boto3
|
4 |
+
transformers
|
utils.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import boto3
|
3 |
+
from path import Path
|
4 |
+
|
5 |
+
# credentials aws
|
6 |
+
aws_access_key = os.getenv("AWS_ACCESS_KEY_ID")
|
7 |
+
aws_secret_key = os.getenv("AWS_SECRET_ACCESS_KEY")
|
8 |
+
bucket_name = os.getenv("BUCKET_NAME")
|
9 |
+
|
10 |
+
|
11 |
+
s3 = boto3.client(
|
12 |
+
"s3",
|
13 |
+
aws_access_key_id=aws_access_key,
|
14 |
+
aws_secret_access_key=aws_secret_key
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def download_model_from_s3(local_path: Path, s3_prefix: str):
|
19 |
+
if os.path.exists(local_path) and os.listdir(local_path):
|
20 |
+
st.toast(f"β
Model {local_path} Available!", icon="π")
|
21 |
+
return
|
22 |
+
|
23 |
+
os.makedirs(local_path, exist_ok=True)
|
24 |
+
paginator = s3.get_paginator("list_objects_v2")
|
25 |
+
|
26 |
+
for result in paginator.paginate(Bucket=bucket_name, Prefix=s3_prefix):
|
27 |
+
if "Contents" in result:
|
28 |
+
for key in result["Contents"]:
|
29 |
+
s3_key = key["Key"]
|
30 |
+
local_file = os.path.join(local_path, os.path.relpath(s3_key, s3_prefix))
|
31 |
+
|
32 |
+
os.makedirs(os.path.dirname(local_file), exist_ok=True)
|
33 |
+
s3.download_file(bucket_name, s3_key, local_file)
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|