Spaces:
Sleeping
Sleeping
fahmiaziz98
commited on
Commit
·
43148dc
1
Parent(s):
6753f91
first commit
Browse files
app.py
CHANGED
@@ -41,10 +41,13 @@ if model_choice not in st.session_state.downloaded_models:
|
|
41 |
if model_choice == "TinyBert Sentiment Analysis":
|
42 |
text = st.text_area("Enter Text:", "This movie was horrible, the plot was really boring. acting was okay")
|
43 |
predict = st.button("Predict Sentiment")
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
if predict:
|
48 |
with st.spinner("Predicting..."):
|
49 |
output = classifier(text)
|
50 |
st.write(output)
|
@@ -53,10 +56,13 @@ if model_choice == "TinyBert Sentiment Analysis":
|
|
53 |
if model_choice == "TinyBert Disaster Classification":
|
54 |
text = st.text_area("Enter Text:", "There is a fire in the building")
|
55 |
predict = st.button("Predict Sentiment")
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
if predict:
|
60 |
with st.spinner("Predicting..."):
|
61 |
output = classifier(text)
|
62 |
st.write(output)
|
@@ -68,7 +74,7 @@ if model_choice == "VIT Pose Classification":
|
|
68 |
|
69 |
if uploaded_file is not None:
|
70 |
image = Image.open(uploaded_file)
|
71 |
-
st.image(image, caption="Your Image",
|
72 |
|
73 |
image_processor = AutoImageProcessor.from_pretrained(local_path, use_fast=True)
|
74 |
pipe = pipeline('image-classification', model=local_path, image_processor=image_processor, device=device)
|
|
|
41 |
if model_choice == "TinyBert Sentiment Analysis":
|
42 |
text = st.text_area("Enter Text:", "This movie was horrible, the plot was really boring. acting was okay")
|
43 |
predict = st.button("Predict Sentiment")
|
44 |
+
try:
|
45 |
+
classifier = pipeline("text-classification", model=local_path, device=device)
|
46 |
+
except OSError:
|
47 |
+
st.error("❌ Model not found. Please download the model first.")
|
48 |
+
classifier = None
|
49 |
|
50 |
+
if predict and classifier:
|
|
|
|
|
51 |
with st.spinner("Predicting..."):
|
52 |
output = classifier(text)
|
53 |
st.write(output)
|
|
|
56 |
if model_choice == "TinyBert Disaster Classification":
|
57 |
text = st.text_area("Enter Text:", "There is a fire in the building")
|
58 |
predict = st.button("Predict Sentiment")
|
59 |
+
try:
|
60 |
+
classifier = pipeline("text-classification", model=local_path, device=device)
|
61 |
+
except OSError:
|
62 |
+
st.error("❌ Model not found. Please download the model first.")
|
63 |
+
classifier = None
|
64 |
|
65 |
+
if predict and classifier:
|
|
|
|
|
66 |
with st.spinner("Predicting..."):
|
67 |
output = classifier(text)
|
68 |
st.write(output)
|
|
|
74 |
|
75 |
if uploaded_file is not None:
|
76 |
image = Image.open(uploaded_file)
|
77 |
+
st.image(image, caption="Your Image", width=300)
|
78 |
|
79 |
image_processor = AutoImageProcessor.from_pretrained(local_path, use_fast=True)
|
80 |
pipe = pipeline('image-classification', model=local_path, image_processor=image_processor, device=device)
|