Spaces:
Running
Running
import os | |
import requests | |
from flask import Flask, render_template, request, jsonify | |
from werkzeug.utils import secure_filename | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
import torch.nn.functional as F # For softmax | |
app = Flask(__name__) | |
# Define device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Model and transformation setup | |
def download_model_if_not_exists(url, model_path): | |
"""Download model from Hugging Face repository if it doesn't exist locally.""" | |
if not os.path.exists(model_path): | |
print("Model not found locally, downloading from Hugging Face...") | |
response = requests.get(url) | |
if response.status_code == 200: | |
with open(model_path, 'wb') as f: | |
f.write(response.content) | |
print(f"Model downloaded and saved to {model_path}") | |
else: | |
print("Failed to download model. Please check the URL.") | |
else: | |
print("Model already exists locally.") | |
def load_model(model_path): | |
"""Load model from the given path.""" | |
model = torch.load(model_path, map_location=torch.device('cpu')) | |
model.eval() # Set model to evaluation mode | |
model.to(device) | |
return model | |
def preprocess_image(image_path): | |
transform = T.Compose([ | |
T.Resize((224, 224)), # Resize image to 224x224 | |
T.ToTensor(), # Convert image to Tensor | |
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize | |
]) | |
image = Image.open(image_path).convert("RGB") # Open and convert image to RGB | |
return transform(image).unsqueeze(0) # Add batch dimension | |
def get_probabilities(logits): | |
"""Apply softmax to get probabilities.""" | |
probabilities = F.softmax(logits, dim=1) | |
percentages = probabilities * 100 | |
return percentages | |
def predict(image_path, model, class_names): | |
"""Make prediction using the trained model.""" | |
image_tensor = preprocess_image(image_path).to(device) | |
model.eval() | |
with torch.inference_mode(): # Disable gradient calculations | |
outputs = model(image_tensor) | |
percentages = get_probabilities(outputs) | |
_, predicted_class = torch.max(outputs, 1) # Get the index of the highest logit | |
predicted_label = class_names[predicted_class.item()] | |
return predicted_label, percentages | |
# Define class names | |
class_names = ['Heart', 'Oblong', 'Oval', 'Round', 'Square'] | |
# Path to the model file | |
model_path = r"model_85_nn_.pth" # Update this with the correct model path | |
model_url = "https://huggingface.co/fahd9999/model_85_nn_/resolve/main/model_85_nn_.pth?download=true" | |
# Download the model only if it doesn't exist locally | |
download_model_if_not_exists(model_url, model_path) | |
# Load the model | |
model = load_model(model_path) | |
# API to render the index page | |
def index(): | |
return render_template('index.html') | |
# API to handle image upload and prediction | |
def predict_face_shape(): | |
if 'file' not in request.files: | |
return jsonify({'error': 'No file part'}) | |
file = request.files['file'] | |
if file.filename == '': | |
return jsonify({'error': 'No selected file'}) | |
if file: | |
os.makedirs('uploads',exist_ok=True) | |
filename = secure_filename(file.filename) | |
file_path = os.path.join('uploads', filename) | |
file.save(file_path) | |
predicted_label, percentages = predict(file_path, model, class_names) | |
result = {class_names[i]: percentages[0, i].item() for i in range(len(class_names))} | |
sorted_result = dict(sorted(result.items(), key=lambda item: item[1], reverse=True)) | |
print(sorted_result) | |
return jsonify(sorted_result) | |
if __name__ == '__main__': | |
app.run(debug=False) | |